(扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人
Description
Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远。由于受软硬件设计所限,机器人卡尔只能定点跳远。若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去。 现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和。 你能帮助Dr. Kong判断机器人能否蹦蹦跳跳,拼出数字(S,T)吗? 假设机器人卡尔初始站在(0,0)位置上。 Input
第一行: K 表示有多少组测试数据。 接下来有K行,每行:X Y S T 1≤K≤10000 -2*109 <= X , Y, S, T <= 2*109 数据之间有一个空格。 Output
对于每组测试数据,输出一行:Y或者为N,分别表示可以拼出来,不能拼出来 Sample Input
3
2 1 3 3
1 1 0 1
1 0 -2 3
Sample Output
Y
N
Y
欧几里德与扩展欧几里德算法 :http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html
/*
思路:(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)
虽然八个点,其实有用的只有四个点,其他的四个点都可以被替代,比如
(x,y)可以替代 (-x, -y) <-> -[(x, y)]
设这四个点是(x,y), (x, -y), (y, x), (y,-x)分别经过a1, a2, a3, a4次
则有
(a1+a2)x + (a3+a4)y = s; ---> Ax + By = s; (很明显的不定方程的形式)
(a1-a2)y + (a3-a4)x = t; ---> Dx + Cy = t;
仔细观察上述式子, A+D 和 B+C 都是 偶数
对于Ax + By = s,可以利用exgcd()求出A, B的值,同理也可以求出D,C的值
如果A,B 为等式的解,那么其余的结为:
A = A + y/gcd(A, B)*t(其中t为任意整数)
B = B + x/gcd(A, B)*t
利用上面的式子, 枚举 A,B,C,D ,知道 满足 A+D 和 B+C的结果为偶数!
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#define MAX 0x3f3f3f3f
#define N 550
using namespace std; long long exgcd(long long a,long long b,long long &x,long long &y)
{
if(b==)
{
x=;
y=;
return a;
}
long long r=exgcd(b,a%b,x,y);
long long t=x;
x=y;
y=t-a/b*y;
return r;
} /*
x = x + b/gcd(a, b)*t;
y = y - a/gcd(a, b)*t;
*/ int main() {
int k;
long long x, y, s, t;
scanf("%d", &k);
while(k--){
scanf("%lld%lld%lld%lld", &x, &y, &s, &t);
long long a, b, c, d, g;
g = exgcd(x, y, a, b);
c = a;
d = b;
if(s%g== && t%g==){
a = a*(s/g);
b = b*(s/g);
c = c*(t/g);
d = d*(t/g);
bool flag = false;
for(int i=-; i<= && !flag; ++i){
long long aa, bb;
aa = a+x/g*i;
bb = b-y/g*i;
for(int j=-; j<= && !flag; ++j){
long long cc, dd;
cc = c+x/g*j;
dd = d-y/g*j;
if((aa+dd)%== && (bb+cc)%==)
flag = true;
}
}
if(flag) printf("Y\n");
else printf("N\n");
} else {
printf("N\n") ;
}
}
return ;
}
(扩展欧几里德算法)zzuoj 10402: C.机器人的更多相关文章
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- poj1061-青蛙的约会(扩展欧几里德算法)
一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...
- HDU 1576 A/B 扩展欧几里德算法
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- ACM_扩展欧几里德算法
<pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...
- 扩展欧几里德算法(递归及非递归实现c++版)
今天终于弄懂了扩展欧几里德算法,有了自己的理解,觉得很神奇,就想着写一篇博客. 在介绍扩展欧几里德算法之前,我们先来回顾一下欧几里德算法. 欧几里德算法(辗转相除法): 辗转相除法求最大公约数,高中就 ...
- POJ 1061 青蛙的约会(扩展欧几里德算法)
题意:两只青蛙在同一个纬度上跳跃,给定每个青蛙的开始坐标和每秒跳几个单位,纬度长为L,求它们相遇的最短时间. 析:开始,一看只有一组数据,就想模拟一下,觉得应该不会超时,但是不幸的是TLE了,我知道这 ...
- POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解
扩展欧几里得算法模板 #include <cstdio> #include <cstring> #define ll long long using namespace std ...
随机推荐
- oracle中的函数及其应用
--..............常用的单行函数...................... ------------------- 常用的字符函数 ---------------------- ...
- nginx Windows服务形式运行
背景 现在使用ngnix的人越来越多,nginx的优势劣势网上也很多说明.这里就不探讨nginx优势与劣势,每个工具都有自己优势劣势,没有最好的工具,只有最合适的工具. 如何选择适当的工具,根据项 ...
- 在RHEL6p5中设置网卡
前提: 在用ifconfig -a查看时已经显示出wlan0(无线网卡)的存在(即不用装驱动,驱动另记) 工具: 1.yum install wpasupplicant* 2.yum install ...
- 张洋:浅析PageRank算法
本文引自http://blog.jobbole.com/23286/ 很早就对Google的PageRank算法很感兴趣,但一直没有深究,只有个轮廓性的概念.前几天趁团队outing的机会,在动车上看 ...
- 基于AutoCAD的ObjectARX之NET扩展(mcnetarx)-AcdbEntGet
1.AcdbEntGet用于获取实体的组码. 示例: ' 定义保存实体名称的变量 Dim ent() As Integer = New Integer() {} ' 获取最后一个实体 mcnetarx ...
- 设置UIButton或者UILabel显示文字的行数
需要在UIButton的titleLabel或者UILabel的text 字符串里面添加换行符号 “\n”,并且设置 UILabel的numberOfLines属性 栗子:行数要和“\n”的个数对应, ...
- Link To Sql简单
Linq及其扩展 Linq是一种数据查询语言(它能够从多种数据源中查询数据). 现在基于Linq的扩展有: Linq To Object:主要是从内存对象中查询数据 Linq To Sql:主要是从M ...
- MongoDB与内存
来自 http://www.ttlsa.com/mongodb/mongodb-and-memory/# 但凡初次接触MongoDB的人,无不惊讶于它对内存的贪得无厌,至于个中缘由,我先讲讲Linu ...
- node(thrift)
thrift是一种跨语言的RPC框架,据说uber采在node.js项目中采用thrfit后,比原有的http+json的方式提高近20倍的性能. 所谓的RPC本质上就是客户端将需要调用的方法名和参数 ...
- Linux下Java开发环境搭建—CentOS下Eclipse的安装教程
据了解,在Linux下的Java开发很多时候都比较喜欢使用vim + 插件,反而很少使用Eclipse,但是我是第一次使用Linux来进行Java编程,就什么都体验下啦,好啦,废话不多说,直接开始啦. ...