最大期望算法Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。
统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习计算机视觉数据聚类(Data Clustering)领域。
最大期望算法经过两个步骤交替进行计算
  第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;
  第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。
  M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
总体来说,EM的算法流程如下:
  1.初始化分布参数
  2.重复直到收敛:
E步骤:估计未知参数的期望值,给出当前的参数估计
M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。
 
迭代使用EM步骤,直至收敛。
  
  可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,然后观察是否一样多,把比较多的那一份取出一点放到另一个碗中,这个过程一直迭代地执行下去,直到大家看不出两个碗所容纳的菜有什么分量上的不同为止。EM算法就是这样,假设我们估计知道A和B两个参数,在开始状态下二者都是未知的,并且知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。
  EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有噪声等所谓的不完全数据(incomplete data)。
  假定集合Z = (X,Y)由观测数据 X 和未观测数据Y 组成, X 和Z = (X,Y)分别称为不完整数据和完整数据。假设Z的联合概率密度参数化地定义为P(X,Y|Θ),其中Θ 表示要被估计的参数。Θ 的最大似然估计是求不完整数据的对数似然函数L(X;Θ)的最大值而得到的:
  L(Θ; X )= log p(X |Θ) = ∫log p(X ,Y |Θ)dY ;
EM算法包括两个步骤:由E步和M步组成,它是通过迭代地最大化完整数据的对数似然函数Lc( X;Θ )的期望来最大化不完整数据的对数似然函数,其中:
  Lc(X;Θ) =log p(X,Y |Θ) ;
假设在算法第t次迭代后Θ 获得的估计记为Θ(t ) ,则在(t+1)次迭代时,
E-步:计算完整数据的对数似然函数的期望,记为:
Q(Θ |Θ (t) ) = E{Lc(Θ;Z)|X;Θ(t) };
M-步:通过最大化Q(Θ |Θ(t) ) 来获得新的Θ 。
通过交替使用这两个步骤,EM算法逐步改进模型的参数,使参数和训练样本的似然概率逐渐增大,最后终止于一个极大点。直观地理解EM算法,它也可被看作为一个逐次逼近算法:事先并不知道模型的参数,可以随机的选择一套参数或者事先粗略地给定某个初始参数λ0 ,确定出对应于这组参数的最可能的状态,计算每个训练样本的可能结果的概率,在当前的状态下再由样本对参数修正,重新估计参数λ ,并在新的参数下重新确定模型的状态,这样,通过多次的迭代,循环直至某个收敛条件满足为止,就可以使得模型的参数逐渐逼近真实参数。
EM算法的主要目的是提供一个简单的迭代算法计算后验密度函数,它的最大优点是简单和稳定,但容易陷入局部最优

EM最大期望化算法的更多相关文章

  1. EM(期望最大化)算法初步认识

    不多说,直接上干货! 机器学习十大算法之一:EM算法(即期望最大化算法).能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么 ...

  2. EM最大期望算法

    [简介] em算法,指的是最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,在统计学中被用于寻找,依赖于不可观察的隐性变量的概率 ...

  3. 【机器学习】EM最大期望算法

    EM, ExpectationMaximization Algorithm, 期望最大化算法.一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估 ...

  4. MLE极大似然估计和EM最大期望算法

    机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...

  5. EM相关两个算法 k-mean算法和混合高斯模型

    转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...

  6. Wellner 自适应阈值二值化算法

    参考文档: Adaptive Thresholding for the DigitalDesk.pdf       Adaptive Thresholding Using the Integral I ...

  7. sauvola二值化算法研究

    sauvola二值化算法研究   sauvola是一种考虑局部均值亮度的图像二值化方法, 以局部均值为基准在根据标准差做些微调.算法实现上一般用积分图方法 来实现.这个方法能很好的解决全局阈值方法的短 ...

  8. PIE SDK栅格矢量化算法

    1.算法功能简介 栅格数据矢量化较为复杂,如果由一幅扫描的数字化地图来建立矢量数据库,则需要经过数字图象处理,如边缘增强.细化.二值化.特征提取及模式识别才能获得矢量数据.人们通常将多色地图分色后逐个 ...

  9. 一种局部二值化算法:Sauvola算法

    之前接触过全局二值化(OTSU算法),还有OPENCV提供的自适应二值化,最近又了解到一种新的局部二值化算法,Sauvola算法. 转载自:http://www.dididongdong.com/ar ...

随机推荐

  1. html css 编写规范

    html 规范 一 语法 1.用两个空格带她tab, 2.嵌套的元素应该缩进一次,即两个空格是最好 3.属性定义,全部使用双引号,尽量避免单引号. 4.不要在自闭和标签尾部添加闭合标签. 5.可选得结 ...

  2. MySQL中存储过程+事件的使用方法

    一.背景 将界面操作日志存储在MySQL数据库中的operationlog表中,如果该表不能自动备份,表中的数据会越来越多,影响速度.可以定期将表中数据备份到另外一个表中来解决. 二.解决方案 1.使 ...

  3. SharePoint Style Library的权限问题

    Style Library是属于site collection级别的. 所以如果在某一个site中直接给某个用户设置了比如Full control的权限,这个权限信息并不会自动进入Style Libr ...

  4. C#开发微信公众平台(附Demo)

    服务号和订阅号 服务号是公司申请的微信公共账号,订阅号是个人申请的,我个人也申请了一个,不过没怎么用. 服务号 1个月(30天)内仅可以发送1条群发消息. 发给订阅用户(粉丝)的消息,会显示在对方的聊 ...

  5. bindActionCreators

    在 http://www.ruanyifeng.com/blog/2016/09/redux_tutorial_part_three_react-redux.html 没有介绍这个,react-red ...

  6. socket-自我总结(2)

    这里总结下一个服务端与多个客户端之间的通信. 先看demo: #/usr/bin/env python #_*_coding:utf-8_*_ __author__ = 'ganzl' import ...

  7. python之路-Day11

    引子 到目前为止,我们已经学了网络并发编程的2个套路, 多进程,多线程,这哥俩的优势和劣势都非常的明显,我们一起来回顾下 协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程: ...

  8. Breakpoint is not hit

    新拿到一个Silverlight项目,能够正常运行,但是一旦运行起来,断点处由实心点变成了空心的,并警告:The breakpoint will not currently be hit. No sy ...

  9. html初学者笔记01

    一.Html简介 HTML 是一种标记语言 忽略大小写,语法宽松 使用 HTML 标记和元素,可以: 控制页面和内容的外观 发布联机文档 使用 HTML 文档中插入的链接检索联机信息 创建联机表单,收 ...

  10. 检测Java程序运行时间的2种方法(高精度的时间[纳秒]与低精度的时间[毫秒])

    第一种是以毫秒为单位计算的. 代码如下: long startTime=System.currentTimeMillis(); //获取开始时间 doSomeThing(); //测试的代码段 lon ...