Java 字符串拼接 五种方法的性能比较分析 从执行100次到90万次
【请尊重原创版权,如需引用,请注明来源及地址】
> 字符串拼接一般使用“+”,但是“+”不能满足大批量数据的处理,Java中有以下五种方法处理字符串拼接,各有优缺点,程序开发应选择合适的方法实现。
1. 加号 “+”
2. String contact() 方法
3. StringUtils.join() 方法
4. StringBuffer append() 方法
5. StringBuilder append() 方法
> 经过简单的程序测试,从执行100次到90万次的时间开销如下表:
由此可以看出:
1. 方法1 加号 “+” 拼接 和 方法2 String contact() 方法 适用于小数据量的操作,代码简洁方便,加号“+” 更符合我们的编码和阅读习惯;
2. 方法3 StringUtils.join() 方法 适用于将ArrayList转换成字符串,就算90万条数据也只需68ms,可以省掉循环读取ArrayList的代码;
3. 方法4 StringBuffer append() 方法 和 方法5 StringBuilder append() 方法 其实他们的本质是一样的,都是继承自AbstractStringBuilder,效率最高,大批量的数据处理最好选择这两种方法。
4. 方法1 加号 “+” 拼接 和 方法2 String contact() 方法 的时间和空间成本都很高(分析在本文末尾),不能用来做批量数据的处理。
> 源代码,供参考
package cnblogs.twzheng.lab2; /**
* @author Tan Wenzheng
*
*/
import java.util.ArrayList;
import java.util.List; import org.apache.commons.lang3.StringUtils; public class TestString { private static final int max = 100; public void testPlus() {
System.out.println(">>> testPlus() <<<"); String str = ""; long start = System.currentTimeMillis(); for (int i = 0; i < max; i++) {
str = str + "a";
} long end = System.currentTimeMillis(); long cost = end - start; System.out.println(" {str + \"a\"} cost=" + cost + " ms");
} public void testConcat() {
System.out.println(">>> testConcat() <<<"); String str = ""; long start = System.currentTimeMillis(); for (int i = 0; i < max; i++) {
str = str.concat("a");
} long end = System.currentTimeMillis(); long cost = end - start; System.out.println(" {str.concat(\"a\")} cost=" + cost + " ms");
} public void testJoin() {
System.out.println(">>> testJoin() <<<"); long start = System.currentTimeMillis(); List<String> list = new ArrayList<String>(); for (int i = 0; i < max; i++) {
list.add("a");
} long end1 = System.currentTimeMillis();
long cost1 = end1 - start; StringUtils.join(list, ""); long end = System.currentTimeMillis();
long cost = end - end1; System.out.println(" {list.add(\"a\")} cost1=" + cost1 + " ms");
System.out.println(" {StringUtils.join(list, \"\")} cost=" + cost
+ " ms");
} public void testStringBuffer() {
System.out.println(">>> testStringBuffer() <<<"); long start = System.currentTimeMillis(); StringBuffer strBuffer = new StringBuffer(); for (int i = 0; i < max; i++) {
strBuffer.append("a");
}
strBuffer.toString(); long end = System.currentTimeMillis(); long cost = end - start; System.out.println(" {strBuffer.append(\"a\")} cost=" + cost + " ms");
} public void testStringBuilder() {
System.out.println(">>> testStringBuilder() <<<"); long start = System.currentTimeMillis(); StringBuilder strBuilder = new StringBuilder(); for (int i = 0; i < max; i++) {
strBuilder.append("a");
}
strBuilder.toString(); long end = System.currentTimeMillis(); long cost = end - start; System.out
.println(" {strBuilder.append(\"a\")} cost=" + cost + " ms");
}
}
> 测试结果:
1. 执行100次, private static final int max = 100;
>>> testPlus() <<<
{str + "a"} cost=0 ms
>>> testConcat() <<<
{str.concat("a")} cost=0 ms
>>> testJoin() <<<
{list.add("a")} cost1=0 ms
{StringUtils.join(list, "")} cost=20 ms
>>> testStringBuffer() <<<
{strBuffer.append("a")} cost=0 ms
>>> testStringBuilder() <<<
{strBuilder.append("a")} cost=0 ms
2. 执行1000次, private static final int max = 1000;
>>> testPlus() <<<
{str + "a"} cost=10 ms
>>> testConcat() <<<
{str.concat("a")} cost=0 ms
>>> testJoin() <<<
{list.add("a")} cost1=0 ms
{StringUtils.join(list, "")} cost=20 ms
>>> testStringBuffer() <<<
{strBuffer.append("a")} cost=0 ms
>>> testStringBuilder() <<<
{strBuilder.append("a")} cost=0 ms
3. 执行1万次, private static final int max = 10000;
>>> testPlus() <<<
{str + "a"} cost=150 ms
>>> testConcat() <<<
{str.concat("a")} cost=70 ms
>>> testJoin() <<<
{list.add("a")} cost1=0 ms
{StringUtils.join(list, "")} cost=30 ms
>>> testStringBuffer() <<<
{strBuffer.append("a")} cost=0 ms
>>> testStringBuilder() <<<
{strBuilder.append("a")} cost=0 ms
4. 执行10万次, private static final int max = 100000;
>>> testPlus() <<<
{str + "a"} cost=4198 ms
>>> testConcat() <<<
{str.concat("a")} cost=1862 ms
>>> testJoin() <<<
{list.add("a")} cost1=21 ms
{StringUtils.join(list, "")} cost=49 ms
>>> testStringBuffer() <<<
{strBuffer.append("a")} cost=10 ms
>>> testStringBuilder() <<<
{strBuilder.append("a")} cost=10 ms
5. 执行20万次, private static final int max = 200000;
>>> testPlus() <<<
{str + "a"} cost=17196 ms
>>> testConcat() <<<
{str.concat("a")} cost=7653 ms
>>> testJoin() <<<
{list.add("a")} cost1=20 ms
{StringUtils.join(list, "")} cost=51 ms
>>> testStringBuffer() <<<
{strBuffer.append("a")} cost=20 ms
>>> testStringBuilder() <<<
{strBuilder.append("a")} cost=16 ms
6. 执行50万次, private static final int max = 500000;
>>> testPlus() <<<
{str + "a"} cost=124693 ms
>>> testConcat() <<<
{str.concat("a")} cost=49439 ms
>>> testJoin() <<<
{list.add("a")} cost1=21 ms
{StringUtils.join(list, "")} cost=50 ms
>>> testStringBuffer() <<<
{strBuffer.append("a")} cost=20 ms
>>> testStringBuilder() <<<
{strBuilder.append("a")} cost=10 ms
7. 执行90万次, private static final int max = 900000;
>>> testPlus() <<<
{str + "a"} cost=456739 ms
>>> testConcat() <<<
{str.concat("a")} cost=186252 ms
>>> testJoin() <<<
{list.add("a")} cost1=20 ms
{StringUtils.join(list, "")} cost=68 ms
>>> testStringBuffer() <<<
{strBuffer.append("a")} cost=30 ms
>>> testStringBuilder() <<<
{strBuilder.append("a")} cost=24 ms
> 查看源代码,以及简单分析
String contact 和 StringBuffer,StringBuilder 的源代码都可以在Java库里找到,有空可以研究研究。
1. 其实每次调用contact()方法就是一次数组的拷贝,虽然在内存中是处理都是原子性操作,速度非常快,但是,最后的return语句会创建一个新String对象,限制了concat方法的速度。
public String concat(String str) {
int otherLen = str.length();
if (otherLen == 0) {
return this;
}
int len = value.length;
char buf[] = Arrays.copyOf(value, len + otherLen);
str.getChars(buf, len);
return new String(buf, true);
}
2. StringBuffer 和 StringBuilder 的append方法都继承自AbstractStringBuilder,整个逻辑都只做字符数组的加长,拷贝,到最后也不会创建新的String对象,所以速度很快,完成拼接处理后在程序中用strBuffer.toString()来得到最终的字符串。
/**
* Appends the specified string to this character sequence.
* <p>
* The characters of the {@code String} argument are appended, in
* order, increasing the length of this sequence by the length of the
* argument. If {@code str} is {@code null}, then the four
* characters {@code "null"} are appended.
* <p>
* Let <i>n</i> be the length of this character sequence just prior to
* execution of the {@code append} method. Then the character at
* index <i>k</i> in the new character sequence is equal to the character
* at index <i>k</i> in the old character sequence, if <i>k</i> is less
* than <i>n</i>; otherwise, it is equal to the character at index
* <i>k-n</i> in the argument {@code str}.
*
* @param str a string.
* @return a reference to this object.
*/
public AbstractStringBuilder append(String str) {
if (str == null) str = "null";
int len = str.length();
ensureCapacityInternal(count + len);
str.getChars(0, len, value, count);
count += len;
return this;
}
/**
* This method has the same contract as ensureCapacity, but is
* never synchronized.
*/
private void ensureCapacityInternal(int minimumCapacity) {
// overflow-conscious code
if (minimumCapacity - value.length > 0)
expandCapacity(minimumCapacity);
} /**
* This implements the expansion semantics of ensureCapacity with no
* size check or synchronization.
*/
void expandCapacity(int minimumCapacity) {
int newCapacity = value.length * 2 + 2;
if (newCapacity - minimumCapacity < 0)
newCapacity = minimumCapacity;
if (newCapacity < 0) {
if (minimumCapacity < 0) // overflow
throw new OutOfMemoryError();
newCapacity = Integer.MAX_VALUE;
}
value = Arrays.copyOf(value, newCapacity);
}
3. 字符串的加号“+” 方法, 虽然编译器对其做了优化,使用StringBuilder的append方法进行追加,但是每循环一次都会创建一个StringBuilder对象,且都会调用toString方法转换成字符串,所以开销很大。
注:执行一次字符串“+”,相当于 str = new StringBuilder(str).append("a").toString();
4. 本文开头的地方统计了时间开销,根据上述分析再想想空间的开销。常说拿空间换时间,反过来是不是拿时间换到了空间呢,但是在这里,其实时间是消耗在了重复的不必要的工作上(生成新的对象,toString方法),所以对大批量数据做处理时,加号“+” 和 contact 方法绝对不能用,时间和空间成本都很高。
【请尊重原创版权,如需引用,请注明来源及地址】
Java 字符串拼接 五种方法的性能比较分析 从执行100次到90万次的更多相关文章
- Java 字符串拼接四种方式的性能比较分析
一.简单介绍 编写代码过程中,使用"+"和"contact"比较普遍,但是它们都不能满足大数据量的处理,一般情况下有一下四种方法处理字符串拼接,如下: 1. 加 ...
- python—字符串拼接三种方法
python—字符串拼接三种方法 1.使用加号(+)号进行拼接 字符串拼接直接进行相加就可以,比较容易理解,但是一定要记得,变量直接相加,不是变量就要用引号引起来,不然会出错,另外数字是要转换为字 ...
- {转}Java 字符串分割三种方法
http://www.chenwg.com/java/java-%E5%AD%97%E7%AC%A6%E4%B8%B2%E5%88%86%E5%89%B2%E4%B8%89%E7%A7%8D%E6%9 ...
- 使用位运算、值交换等方式反转java字符串-共四种方法
在本文中,我们将向您展示几种在Java中将String类型的字符串字母倒序的几种方法. StringBuilder(str).reverse() char[]循环与值交换 byte循环与值交换 apa ...
- Java 字符串拼接5种方式性能比较
https://www.cnblogs.com/twzheng/p/5923642.html
- JS中判断某个字符串是否包含另一个字符串的五种方法
String对象的方法 方法一: indexOf() (推荐) ? 1 2 var str = "123" console.log(str.indexOf("2&qu ...
- Java:判断字符串是否为数字的五种方法
Java:判断字符串是否为数字的五种方法 //方法一:用JAVA自带的函数 public static boolean isNumeric(String str){ for (int i = str. ...
- Java List转换为字符串的几种方法
Java List转换为字符串的几种方法 import org.apache.commons.lang3.StringUtils; import java.util.ArrayList; import ...
- js去掉字符串前后空格的五种方法
转载 :http://www.2cto.com/kf/201204/125943.html 第一种:循环检查替换[javascript]//供使用者调用 function trim(s){ ret ...
随机推荐
- 强大的commons
在此之前对commons包了解的不多,最常用的就是StringUtils.isBlack(str)来取代if(str !=null && str.lenght()>1)的判断,昨 ...
- openlayers中实现自定冒泡的效果
自定义的Openlayers.Popup.FreshCloud继承自Openlayers.Popup.Framed,实现了比较简洁的冒泡效果,详细代码如下 /** * Class: OpenLayer ...
- VC++动态链接库(DLL)编程深入浅出(zz)
VC++动态链接库(DLL)编程深入浅出(zz) 1.概论 先来阐述一下DLL(Dynamic Linkable Library)的概念,你可以简单的把DLL看成一种仓库,它提供给你一些可以直接拿来用 ...
- 3.2 ARM指令分类学习
1 算术移位寄存器和逻辑指令 1.1 mov 传送(Move) Mov {条件} {S} <dest>, <op_1> MOV从另一个寄存器.被移位的寄存器.或者一个立即数装载 ...
- xp和win7安装telnet服务
xp: 有些ghost版本的xp会精简掉telnet服务 首先telnet服务需要的几个文件: tlntadmn.exe tlntsess.exe tlntsvr.exe tlntsvrp.dll 文 ...
- Java获取本机ip和服务器ip
一.获取服务器IP InetAddress addr = InetAddress.getLocalHost().getHostAddress();//获得本机IP 二.获取客户端本机IP String ...
- linux mysql重装问题
系统 :ubuntu16.04 使用apt-get命令安装mysql,启动时出错: can't connect to local mysql server through socket '/var/r ...
- Docker Day1 & 2
1. Docker Basic 安装docker(在/etc/selinux/config文件中设置selinux=disabled,否则安装时会报错) curl -ssL http://get.do ...
- HTML。CSS浮动元素详解
浮动定位是指 1.1将元素排除在普通流之外,即元素将脱离标准文档流 1.2元素将不在页面占用空间 1.3将浮动元素放置在包含框的左边或者右边 1.4浮动元素依旧位于包含框之内 2. 浮动的框可以向左或 ...
- iOS常见算法笔试问题
1. 给出一个由小写字母组成的字符串,把所有连续出现的 2 个 a 替换成 bb ( 2 个 b ),但是对于超过两个连续的 a,那么这些字符都不作替换.例如: bad -> bad (一个a, ...