BZOJ4724 [POI2017]Podzielno
4724: [POI2017]Podzielno
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 77 Solved: 37
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 1 1
0
1
2
Sample Output
2
-1
HINT
Source
-----------------------------------------------------------------------------
数学题目
证明在N进制下若1一个数是(N-1)的倍数 那么 他的每一位数字相加在(%(N-1))的意义下等于 0
例如在10进制下 198是9的倍数 因为 (1+9+8)%9=0
证明:
假设一个数字A (N进制下) 那么设它每一位上的数字为 k[i] 则 A=Σki*N^i (N^i)%(N-1)=1A%(N-1)=(Σki)%(N-1)=0
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define CH c=getchar()
#define mp make_pair
#define fi first
#define se second
#define For(i,x,y) for(int i=x;i<=y;++i)
using namespace std;
const int N=1e6+;
long long a[N];
long long B,q;
long long f[N];
inline int read()
{
bool f=;char CH;for(;!isdigit(c);CH)if(c=='-')f=;
int x=;for(;isdigit(c);CH)x=(x<<)+(x<<)+c-;
return f?-x:x;
}
int main()
{
// cout<<read();
long long tmp=;
B=read();q=read();
For(i,,B-)a[i]=read();
For(i,,B-)
tmp=(tmp+1LL*(a[i]%(B-))*i)%(B-);
if (tmp)a[tmp]--;
f[]=a[];
For(i,,B-)
{
f[i]=f[i-]+a[i];
}
while(q--)
{
long long k;scanf("%lld",&k);
if(k>=f[B-])printf("-1");else
printf("%d",lower_bound(f,f+B,k+)-f);
puts("");
}
return ;
}
BZOJ4724 [POI2017]Podzielno的更多相关文章
- 【BZOJ4724】[POI2017]Podzielno 数学+二分
[BZOJ4724][POI2017]Podzielno Description B进制数,每个数字i(i=0,1,...,B-1)有a[i]个.你要用这些数字组成一个最大的B进制数X(不能有前导零, ...
- bzoj 4724 [POI2017]Podzielno 二分+模拟
[POI2017]Podzielno Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 364 Solved: 160[Submit][Status][ ...
- 【bzoj4724】[POI2017]Podzielno 二分
题目描述 B进制数,每个数字i(i=0,1,...,B-1)有a[i]个.你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要用完所有数字),使得X是B-1的倍数.q次询问,每次询问X在B进制 ...
- BZOJ 4724: [POI2017]Podzielno
Description 由\([0,B-1]\)的数字构造一个 \(B\) 进制数字,使得他是 \(B-1\) 的倍数. Sol 贪心+二分. 首先 \(X\) 是 \(B-1\) 的倍数,那么有 \ ...
- BZOJ 4726: [POI2017]Sabota?
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 301 Solved ...
- BZOJ 4726: [POI2017]Sabota? 树形dp
4726: [POI2017]Sabota? 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4726 Description 某个公司有n ...
- BZOJ 4727: [POI2017]Turysta
4727: [POI2017]Turysta Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 117 Solved ...
- BZOJ_4726_[POI2017]Sabota?_树形DP
BZOJ_4726_[POI2017]Sabota?_树形DP Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属 ...
- [POI2017]Sabotaż
[POI2017]Sabotaż 题目大意: 一棵\(n(n\le5\times10^5)\)个结点的树,初始时有一个未知的黑点,其余全为白点.对于一个点,如果其子树中黑点所占比例超过\(x\),则这 ...
随机推荐
- hihoCoder#1094
刚开始学习C语言,准备在做hiho的题目的过程中来学习,在此进行记录,如果代码中有错误或者不当的地方还请指正. 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Littl ...
- The guard was taken to hospital in a critical condition.
The Prince George's County Fire Department said the guard was taken to hospital in a critical condit ...
- javascript的实践
jQuery增强了css的选择器功能,是一个简洁快速的脚本库,能够使用短小的代码实现复杂的网页预览效果.如实现表格奇偶行异色 <script language="javascript& ...
- Fragment的生命周期(三)
自定义lifecycleoffragment布局文件 在main_activity布局中引用自定义的fragment布局 到logcat中查看程勋运行的结果 代码如下: 自定义的fragment布局: ...
- java nio(non-blocking io)简介及和io
在 Java1.4之前的I/O系统中,提供的都是面向流的I/O系统,系统一次一个字节地处理数据,一个输入流产生一个字节的数据,一个输出流消费一个字节 的数据,面向流的I/O速度非常慢,而在Java 1 ...
- centos6.4下面安装postgresql以及客户端远程连接
一.安装 centos6.4服务器IP:192.168.220.131 window7客户端IP:192.168.199.218 在centos官网http://www.postgresql.org/ ...
- BZOJ 4521 手机号码
SB数位dp. 我的貌似要特判9999999999的情况. #include<iostream> #include<cstdio> #include<cstring> ...
- nginx做nodejs(express等通用)反向代理
首先配置环境nginx+nodejs...(没有请看我的其他文章,此处不重复) cd 到nginx的site-available目录 ubuntu的在 cd /etc/nginx/site-avail ...
- Photoshop制作的海报修改~
经过几天的征求意见,感觉还是要重新制作,于是把颜色删减了不少 . 这次运用了蒙版和渐变,但感觉效果不太好.再改.. 后来觉得给人的单身感有点少.. 不知道感觉如何,但自己觉得比以前好看..
- Maven项目pom.xml文件详解
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...