Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}, \eex$$ $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

Solution. By Exercise I.5.1, $$\beex \bea |\det(\sef{u_i,v_j})|^2 &=\sev{ \sef{ u_1\wedge \cdots u_k,v_1\wedge \cdots \wedge v_k } }^2\\ &\leq \sen{ u_1\wedge \cdots \wedge u_k }^2\sen{ v_1\wedge \cdots \wedge v_k }^2\\ &=\det \sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}. \eea \eeex$$ Similarly, by Exercise I.5.5, we have $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 制作滚动视图(ScrollView)

    怎样判断是否应当使用滚动视图 所谓的滚动视图,是指一个可以滑动的视窗,视窗大小和位置固定不变,视窗内的内容用户可以通过手指滑动或者拖动滚动天来进行滚动浏览. 滚动视图的目的是为了解决同类内容过多,一个 ...

  2. 简单3d RPG游戏 之 002 生命条(二)

    在游戏中,游戏人物的血条可能会因为受伤或吃血瓶而长度变化,所以需要将血条的长度单独提出来作为一个变量,方便直接修改数值. public float healthBarLength; 改变生命值函数如下 ...

  3. bnuoj 29368 Check the Identity(栈)

    http://www.bnuoj.com/bnuoj/problem_show.php?pid=29368 [题解]:模拟,然后对x,进行枚举,看是否所有都满足条件 [code]: #include ...

  4. nginx流量带宽等请求状态统计( ngx_req_status)

    介绍 ngx_req_status用来展示nginx请求状态信息,类似于apache的status,nginx自带的模块只能显示连接数等等信息,我们并不能知道到底有哪些请求.以及各url域名所消耗的带 ...

  5. 彻底弄懂LSH之simHash算法

    马克·吐温曾经说过,所谓经典小说,就是指很多人希望读过,但很少人真正花时间去读的小说.这种说法同样适用于“经典”的计算机书籍. 最近一直在看LSH,不过由于matlab基础比较差,一直没搞懂.最近看的 ...

  6. ACCESS数据库操作教程

    网易学院视频教程: 上:http://tech.163.com/06/0621/17/2K5K0C2200091U6J.html中:http://tech.163.com/06/0621/17/2K5 ...

  7. hdu 1176

    简单DP  类似于在一个矩形中求最长路径 /************************************************************************* > ...

  8. C++11多线程教学(二)

    C++11多线程教学II 从我最近发布的C++11线程教学文章里,我们已经知道C++11线程写法与POSIX的pthreads写法相比,更为简洁.只需很少几个简单概念,我们就能搭建相当复杂的处理图片程 ...

  9. QueryPerformanceFrequency 和 QueryPerformanceCounter用法

    QueryPerformanceFrequency() - 基本介绍 类型:Win32API 原型:BOOL QueryPerformanceFrequency(LARGE_INTEGER *lpFr ...

  10. 解析php中die(),exit(),return的区别

    die()停止程序运行,输出内容exit是停止程序运行,不输出内容return是返回值die是遇到错误才停止exit是直接停止,并且不运行后续代码,exit()可以显示内容.return就是纯粹的返回 ...