Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}, \eex$$ $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

Solution. By Exercise I.5.1, $$\beex \bea |\det(\sef{u_i,v_j})|^2 &=\sev{ \sef{ u_1\wedge \cdots u_k,v_1\wedge \cdots \wedge v_k } }^2\\ &\leq \sen{ u_1\wedge \cdots \wedge u_k }^2\sen{ v_1\wedge \cdots \wedge v_k }^2\\ &=\det \sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}. \eea \eeex$$ Similarly, by Exercise I.5.5, we have $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. google calendar api v3

    google api for .net nuget Install-Package Google.Apis.Calendar.v3 oauth2 for asp.net http://www.code ...

  2. Transaction Log Truncation

    --method 1-- ALTER DATABASE KIS_Sample3 SET RECOVERY SIMPLE ) ALTER DATABASE KIS_Sample3 SET RECOVER ...

  3. net use命令详细解释

    1)建立空连接: net use \\IP\ipc$ "" /user:"" (一定要注意:这一行命令中包含了3个空格) 2)建立非空连接: net use \ ...

  4. Maven 执行Javadoc时控制台输出乱码问题

    1.0  Maven 执行Javadoc时控制台输出乱码问题 问题描述 最近项目中使用maven-javadoc-plugin生成javadoc时,myEclipse控制台乱码. 插件配置 问题分析 ...

  5. OSUnMapTbl[]的原理

    问题描述:     ucos任务队列中优先级获取 问题解决: uCOS-II是一个多任务的操作系统,每个任务都是一个应用程序,它有自己的寄存器和堆栈空间,即任务控制块TCB(task control ...

  6. spoj 178

    输出相邻的点   比较简单吧....... #include <cstdio> #include <cstring> using namespace std; int main ...

  7. mac忘记密码的解决办法

    开机, 启动时按"cmd+S".这时,你会进入Single User Model,出现像DOS一样的提示符 #root>.请在#root>下 输入 (注意空格, 大小写 ...

  8. python:UnicodeEncodeError

    problem: (<type 'exceptions.UnicodeEncodeError'>, UnicodeEncodeError('ascii', u'[taobao_cocobe ...

  9. linux动态库默认搜索路径设置的三种方法

    众所周知, Linux 动态库的默认搜索路径是 /lib 和 /usr/lib .动态库被创建后,一般都复制到这两个目录中.当程序执行时需要某动态库, 并且该动态库还未加载到内存中,则系统会自动到这两 ...

  10. python lambda 用法

    可以视lambda为一个简易的函数,它不需要return,形式简单 #冒号左边是变量 #冒号右边是返回值 例: >>> def f (x): return x**2 ... > ...