区间dp笔记√
区间DP是一类在区间上进行dp的最优问题,一般是根据问题设出一个表示状态的dp,可以是二维的也可以是三维的,一般情况下为二维。
然后将问题划分成两个子问题,也就是一段区间分成左右两个区间,然后将左右两个区间合并到整个区间,或者说局部最优解合并为全局最优解,然后得解。
区间dp就是f[i][j]表示i到j的一段区间, 然后去转移最优值的dp
一段区间表示一段状态,维护i~j的最优值来转移。
常见区间dp有:合并石子,破环成链类题目
其实对于环形区间DP有一个对付环的好方法:关于N取模(特殊处理0)!
e.g.能量项链
设 f[i,j]为第i到j颗珠子合并的最大能量为max{f[i,k]+f[k+1,j]+a[i]*a[k+1]+a[j+1]};//对k+1,j,j+1等数字关于m取模
这样一来,i>j时 合并就是从i到n在回到1再到j
若使用复制一次数组的方法,时间复杂度为(2*n)^3,空间复杂度为4*n^2
环形取模方法与链式区间空间复杂度相同,且无空间浪费,时间复杂度为n^3
求和(e.g.石子合并)
那么对于最大的区间1---2*n, 首先我们可以知道如果他们只有两个的话那么是可以直接合并的, 而且还有一个条件可以确定,就是当区间中只有一个元素的时候,答案是0
那么对于一个我们不知道答案的区间,计算他的答案有两个方面
①要求区间和
②要找到一种方法把自己分成两个区间
分成两个区间的时候,我们需要知道当前分成这两个区间之后的最大答案是多少。那么我们就枚举再哪里切断这个大区间让他变成两个小区间
于是就推得了状态转移方程。
区间dp笔记√的更多相关文章
- [学习笔记]区间dp
区间 \(dp\) 1.[HAOI2008]玩具取名 \(f[l][r][W/I/N/G]\) 表示区间 \([l,r]\) 中能否压缩成 \(W/I/N/G\) \(Code\ Below:\) # ...
- 区间dp学习笔记
怎么办,膜你赛要挂惨了,下午我还在学区间\(dp\)! 不管怎么样,计划不能打乱\(4\)不\(4\).. 区间dp 模板 为啥我一开始就先弄模板呢?因为这东西看模板就能看懂... for(int i ...
- 区间DP 学习笔记
前言:本人是个DP蒟蒻,一直以来都特别害怕DP,终于鼓起勇气做了几道DP题,发现也没想象中的那么难?(又要被DP大神吊打了呜呜呜. ----------------------- 首先,区间DP是什么 ...
- CH5301 石子合并【区间dp】
5301 石子合并 0x50「动态规划」例题 描述 设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300).每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆, ...
- 数位dp 笔记
目录 数位dp 笔记 解决的问题 & 主体思想 入门 -- windy数 绕一个弯 -- 萌数 the end? -- 恨7不成妻 小心细节 [SDOI2016]储能表 复杂度起飞 [AHOI ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 区间DP LightOJ 1422 Halloween Costumes
http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...
- BZOJ1055: [HAOI2008]玩具取名[区间DP]
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1588 Solved: 925[Submit][Statu ...
随机推荐
- 用户不在sudoers文件中的解决方法
1.更改/etc/sudoers权限为777 2.修改文件中 root ALL=(ALL) ALL 下方增加 user ALL=(ALL) ALL 3.回复文件/e ...
- 【Qt】Qt国际化【转】
简介 Qt国际化属于Qt高级中的一部分,本想着放到后面来说,上节刚好介绍了Qt Linguist,趁热打铁就一起了解下. 对于绝大多数的应用程序,在刚启动时,需要加载默认的语言(或最后一次设置的语言) ...
- C# 测试代码运行时间
一.新建一个控制台程序项目Test.exe using System; using System.Collections.Generic; using System.Linq; using Syste ...
- [大牛翻译系列]Hadoop(16)MapReduce 性能调优:优化数据序列化
6.4.6 优化数据序列化 如何存储和传输数据对性能有很大的影响.在这部分将介绍数据序列化的最佳实践,从Hadoop中榨出最大的性能. 压缩压缩是Hadoop优化的重要部分.通过压缩可以减少作业输出数 ...
- PHP 5.3.X 连接MS SQL Server php_mssql.dll
在网上搜索了一下PHP 5.3.X 连接SQL Server的办法,有人也遇到了这个问题 原来PHP 团队在PHP 5.3 中移除了SQL Server的驱动和库,而微软自己开发了针对PHP的SQL驱 ...
- phpcms v9 源码解析(4)content模块下的index.php文件的init()方法解析
在了解index.php中的init函数的时候,让我们先看看最开始的几行代码 1-5 第二行, defined('IN_PHPCMS') or exit('Nopermission resource ...
- vmware虚拟机上网:host-only
host-only配置 首先主机:vmware1要能共享本地连接这个网络,共享后vmware的ip会自动设置为如图 其次,vmware网络设置如图 最后,虚拟机设置如图 这样,主机与虚拟机之间就能pi ...
- AndroidSDK无法下载API包的解决方法
1:打开Android SDK Manager”,然后点击菜单栏中的“Tools”菜单选项,接下来只需选择“Options”选项即可打开设置窗体,在打开的选项中找到Others框,里面勾选第一个: F ...
- Python开发【第一篇】Python基础之正则表达式补充
正则表达式 一简介:就其本质而言,正则表达式(或RE)是一种小型的.高度专业化的标称语言,(在Python中)它内嵌在Python中,并通过re模块实现.正则表达式模式被编译成一系列的字节码,然后由用 ...
- 从零开始学ios开发(九):Swapping Views
这篇的内容是切换Views,也是上一篇中提到的第三种当iphone发生旋转后改变布局的方式,先回顾一下上一篇中提到的三种方式 1.使用Autosizing 2.写code 3.重新弄个View,替换原 ...