题目链接

题意:给k对数,每对ai, ri。求一个最小的m值,令m%ai = ri;

分析:由于ai并不是两两互质的, 所以不能用中国剩余定理。

只能两个两个的求。

a1*x+r1=m=a2*y+r2
联立得:a1*x-a2*y=r2-r1;
设r=r2-r2;

互质的模线性方程组m=r[i](mod a[i])。两个方程可以合并为一个,新的a1为lcm(a1,a2),

新的r为关于当前两个方程的解m,然后再和下一个方程合并……。(r2-r1)不能被gcd(a1,a2)整除时无解。   怎么推出的看了好多博客也没有介绍。

下面求最小的解的时候有一个定理,上一篇博客青蛙 也用到了:   对方程  ax  ≡  b (mod) n

d = gcd(a,n) 若 d | b 则 有 d 个解 ,最小的解为x0 = (x*(b/d) mod n + n )mod(n/d)

则所有满足方程 x = x0 (mod) (n/d) 的 x 都是原方程的解。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define LL long long
using namespace std; void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if(!b) {d = a; x = ; y = ;}
else{ exgcd(b, a%b, d, y, x); y -= x*(a/b); }
}
int main()
{
int flag;
LL k, a1, a2, r1, r2;
LL c, d, x, y, q;
while(~scanf("%lld", &k))
{
flag = ;
scanf("%lld%lld", &a1, &r1);
k--;
while(k--)
{
scanf("%lld%lld", &a2, &r2);
if(flag)
continue;
c = r2-r1;
exgcd(a1, a2, d, x, y);
if(c%d!=)
flag = ;
q = a2/d;
x = (x*(c/d)%q + q)%q; //求最小的解
r1 = x*a1 + r1; //令r1为所求值,x;
a1 = a1*a2/d; //令a1为a1a2最小公倍数
}
if(flag)
printf("-1\n");
else
printf("%lld\n", r1);
}
return ;
}

poj 2891 Strange Way to Express Integers (扩展gcd)的更多相关文章

  1. POJ.2891.Strange Way to Express Integers(扩展CRT)

    题目链接 扩展中国剩余定理:1(直观的).2(详细证明). [Upd:]https://www.luogu.org/problemnew/solution/P4774 #include <cst ...

  2. POJ - 2891 Strange Way to Express Integers (扩展中国剩余定理)

    题目链接 扩展CRT模板题,原理及证明见传送门(引用) #include<cstdio> #include<algorithm> using namespace std; ty ...

  3. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  4. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  5. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  6. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  7. [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)

    题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...

  8. poj 2891 Strange Way to Express Integers【扩展中国剩余定理】

    扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...

  9. POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】

    求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...

随机推荐

  1. margin-top相对谁的问题

    根据规范,一个盒子如果没有上补白(padding-top)和上边框(border-top),那么这个盒子的上边距会和其内部文档流中的第一个子元素的上边距重叠.意思便是:如果你只想margin相对于父标 ...

  2. Google history

    传说,硅谷的公司在和微软的竞争中一直处于下风,不论在市场,人才,还是在打官司上,直到婴儿巨人Baby Giant谷歌的出现,历史才出现前所未有的改变.Google以一个强大的挑战者的身份出现在人们的视 ...

  3. 1084: [SCOI2005]最大子矩阵 - BZOJ

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  4. 【BZOJ】【2820】YY的GCD

    莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… /****************** ...

  5. catci监控

    snmp安装:yum install net-snmp* 配置/etc/snmp/snmpd.conf:com2sec notConfigUser 192.168.79.129    publicac ...

  6. 电脑问题交流QQ群

    各种电脑问题交流QQ群号 164853622 系统重装 系统恢复 系统出问题 电脑主页 修改 主页 搜狗 软件卸载 顽固 病毒 讨论

  7. linux系统进程的内存布局

    内存管理模块是操作系统的心脏:它对应用程序和系统管理非常重要.今后的几篇文章中,我将着眼于实际的内存问题,但也不避讳其中的技术内幕.由于不少概念是通用的,所以文中大部分例子取自32位x86平台的Lin ...

  8. 【c++基础】const、const指针、const引用

    一.const常量 声明时必须同时初始化(和“引用”一样) 二.const指针 三.const引用 引用本身和引用的对象都是const对象,可以用字面值来赋给const引用(普通引用则不行) ; co ...

  9. 学习笔记--Git安装 创建版本库 图文详解

    一.Git下载 在Windows上安装git,一般为msysgit,官网地址:http://git-scm.com/ 我下载的是Git-1.9.2-preview20140411.exe 二.Git安 ...

  10. pycharm 基础教程

    pycharm 教程(一)安装和首次使用 PyCharm 是我用过的python编辑器中,比较顺手的一个.而且可以跨平台,在macos和windows下面都可以用,这点比较好. 首先预览一下 PyCh ...