BZOJ 3505: [Cqoi2014]数三角形 数学
3505: [Cqoi2014]数三角形
Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://www.lydsy.com/JudgeOnline/problem.php?id=3505
Description
给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个。下图为4x4的网格上的一个三角形。
注意三角形的三点不能共线。
Input
Output
Sample Input
2 2
Sample Output
HINT
题意
题解:
任意选择三个不在同一条直线上的三个点即是满足题意的点
考虑补集,随意选择3个点,然后删除同一直线,同一斜线的就好了
直线上的比较简单,只用想斜线的就好了
枚举矩形,矩形的长宽分别为i,j,那么这个矩形的对角线就会经过gcd(i,j)-1个点
然后这个图里面可以放(n-i+1)*(m-j+1)个矩形
然后搞一搞就好了
代码:
//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 510000
#define mod 10007
#define eps 1e-9
int Num;
//const int inf=0x7fffffff; //§ß§é§à§é¨f§³
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************** ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
int main()
{
ll n=read(),m=read();
n++,m++;
ll ans = (n*m)*(n*m-)*(n*m-2LL)/6LL;
ans -= n*(m*(m-1LL)*(m-2LL)/6LL);
ans -= m*(n*(n-1LL)*(n-2LL)/6LL);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
ll tmp = gcd(i,j)+1LL;
if(tmp>2LL)
ans-=(tmp-2LL)*2LL*(n-i*1LL)*(m-j*1LL);
}
}
printf("%lld\n",ans);
}
BZOJ 3505: [Cqoi2014]数三角形 数学的更多相关文章
- Bzoj 3505: [Cqoi2014]数三角形 数论
3505: [Cqoi2014]数三角形 Time Limits: 1000 ms Memory Limits: 524288 KB Detailed Limits Description
- bzoj 3505: [Cqoi2014]数三角形 组合数学
3505: [Cqoi2014]数三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 478 Solved: 293[Submit][Status ...
- BZOJ 3505: [Cqoi2014]数三角形( 组合数 )
先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...
- BZOJ 3505: [Cqoi2014]数三角形 [组合计数]
3505: [Cqoi2014]数三角形 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. 1<=m,n<=1000 $n++ m++$ $ans ...
- BZOJ 3505 [Cqoi2014]数三角形
3505: [Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. Input ...
- bzoj 3505 [Cqoi2014]数三角形(组合计数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题意] 在n个格子中任选3点构成三角形的方案数. [思路] 任选3点-3点共线 ...
- BZOJ 3505 [Cqoi2014]数三角形(组合数学)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题目大意] 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注 ...
- bzoj 3505 [Cqoi2014]数三角形——排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3505 好题!一定要经常回顾! 那个 一条斜线上的点的个数是其两端点横坐标之差和纵坐标之差的g ...
- bzoj 3505 [Cqoi2014]数三角形 组合
ans=所有的三点排列-共行的-共列的-斜着一条线的 斜着的枚举每个点和原点的gcd,反过来也可以,还能左右,上下挪 #include<cstdio> #include<cstrin ...
随机推荐
- 【转】第一次使用Android Studio时你应该知道的一切配置
原文网址:http://www.cnblogs.com/smyhvae/p/4390905.html [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.c ...
- 【转】linux驱动开发的经典书籍
原文网址:http://www.cnblogs.com/xmphoenix/archive/2012/03/27/2420044.html Linux驱动学习的最大困惑在于书籍的缺乏,市面上最常见的书 ...
- .NET之美——C#中的委托和事件(续)
C#中的委托和事件(续) 引言 如果你看过了 C#中的委托和事件 一文,我想你对委托和事件已经有了一个基本的认识.但那些远不是委托和事件的全部内容,还有很多的地方没有涉及.本文将讨论委托和事件一些更为 ...
- [Everyday Mathematics]20150128
求极限 $$\bex \lim_{x\to 0}\sex{\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}}^\frac{1}{x}. \eex$$
- Android基于基于布局嵌套的页面导航实现
页面如下: 主页面的布局分隔为三部分: 注意观察上面标记为红色的android:id均采用android系统默认的名称: 页面的导航组件: <?xml version="1.0&quo ...
- BaseAdapter中重写getview的心得以及发现convertView回收的机制
以前一直在用BaseAdapter,对于其中的getview方法的重写一直不太清楚.今天终于得以有空来探究它的详细机制. 下面先讲讲我遇到的几个问题: 一.View getview(int posit ...
- bjfu1235 两圆公共面积
给定两个圆,求其覆盖的面积,其实也就是求其公共面积(然后用两圆面积和减去此值即得最后结果). 我一开始是用计算几何的方法做的,结果始终不过.代码如下: /* * Author : ben */ #in ...
- <转>python version 2.7 required,which was not found in the registry
安装PIL-1.1.7.win32-py2.7的时候,不能再注册表中识别出来python2.7 方法:新建一个register.py 文件,把一下代码贴进去,保存 # # script to regi ...
- C#条件语句、循环语句
一.程序的三种结构 顺序结构 分支结构 循环结构 二.条件语句if 语句是最有用的控制结构之一. if … else …语句的语法: if (布尔表达式)执行操作的语句 或if (布尔表达式)执行操 ...
- 关于如果修改 ie 浏览器 文本模式
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/html4/stric ...