问题描述可以详见:http://coursera.cs.princeton.edu/algs4/assignments/percolation.html

关于QuickFindUF的javadoc:http://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

关于WeightedQuickUnionUF的javadoc:http://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

附言:(引用于http://blog.csdn.net/revilwang/article/details/10823467

关于这个模型,其实存在一个问题,在算法课程的论坛上,讨论的热度很高。问题是这样的:

由于引入虚拟的顶层区域和虚拟的底层区域,那么当模型渗透的时候,可能会出现下图的情况

如右边图所示,由于所有的底层区域都和虚拟底层区域相连,所以一旦当区域渗透,则和其他的底层开启区域相连的区域也显示为区域满状态。而实际的情况应该是按照左图所示。这个问题称为 backwash,个人把这个翻译成“回流”。引入虚拟底层区域,很难避免这个问题。讨论的结果,有两种方式可以改进:

1. 不使用虚拟底层区域,只保留顶层,判断是否渗透的时候用虚拟顶层和一个for循环来判断。

2. 保留虚拟底层区域,另外加一个不使用虚拟底层的模型,将两个模型结合在一起来判断是否渗透,通过浪费一些内存来保证效率。

backwash的情况导致Percolation.java在测试时public void isfull(int i, int j) 方法出现错误,这一点从上面两张图也可以明显的看出来。(而解决的办法通过上面两种方法实现)

下面两段代码是从http://www.cnblogs.com/tiny656/p/3820653.html 复制来的,因为自己写的没有考虑到backwash的情况,所以有一些错误,就不挂上来误人子弟了。

Percolation.java

public class Percolation {

    private boolean[] matrix;
private int row, col;
private WeightedQuickUnionUF wquUF;
private WeightedQuickUnionUF wquUFTop;
private boolean alreadyPercolates; public Percolation(int N) {
if (N < 1) throw new IllegalArgumentException("Illeagal Argument");
wquUF = new WeightedQuickUnionUF(N*N+2);
wquUFTop = new WeightedQuickUnionUF(N*N+1);
alreadyPercolates = false;
row = N;
col = N;
matrix = new boolean[N*N+1];
} private void validate(int i, int j) {
if (i < 1 || i > row)
throw new IndexOutOfBoundsException("row index i out of bounds");
if (j < 1 || j > col)
throw new IndexOutOfBoundsException("col index j out of bounds");
} public void open(int i, int j) {
validate(i, j);
int curIdx = (i-1)*col + j;
matrix[curIdx] = true;
if (i == 1) {
wquUF.union(curIdx, 0);
wquUFTop.union(curIdx, 0);
}
if (i == row) {
wquUF.union(curIdx, row*col+1);
} int[] dx = {1, -1, 0, 0};
int[] dy = {0, 0, 1, -1};
for (int dir = 0; dir < 4; dir++) {
int posX = i + dx[dir];
int posY = j + dy[dir];
if (posX <= row && posX >= 1
&& posY <= row && posY >= 1
&& isOpen(posX, posY)) {
wquUF.union(curIdx, (posX-1)*col+posY);
wquUFTop.union(curIdx, (posX-1)*col+posY);
}
}
} public boolean isOpen(int i, int j) {
validate(i, j);
return matrix[(i-1)*col + j];
} public boolean isFull(int i, int j) {
validate(i, j);
int curIdx = (i-1)*col+j;
if (wquUFTop.find(curIdx) == wquUFTop.find(0)) return true;
return false;
} public boolean percolates() {
if (alreadyPercolates) return true;
if (wquUF.find(0) == wquUF.find(row*col+1)) {
alreadyPercolates = true;
return true;
}
return false;
} public static void main(String[] args) {
Percolation perc = new Percolation(2);
perc.open(1, 1);
perc.open(1, 2);
perc.open(2, 1);
System.out.println(perc.percolates());
} }

PercolationStats.java

public class PercolationStats {
private double[] x;
private int expTime;
public PercolationStats(int N, int T) { // perform T independent experiments on an N-by-N grid if (N <= 0 || T <= 0)
throw new IllegalArgumentException("Illeagal Argument");
x = new double[T+1];
expTime = T;
for (int i = 1; i <= T; i++) {
Percolation perc = new Percolation(N);
while (true) {
int posX, posY;
do {
posX = StdRandom.uniform(N) + 1;
posY = StdRandom.uniform(N) + 1;
} while(perc.isOpen(posX, posY));
perc.open(posX, posY);
x[i] += 1;
if (perc.percolates())
break;
}
x[i] = x[i]/(double) (N * N);
}
}
public double mean() { // sample mean of percolation threshold double u = 0.0;
for (int i = 1; i <= expTime; i++) { u += x[i];
}
return u / (double)expTime;
}
public double stddev() { // sample standard deviation of percolation threshold double q = 0.0;
double u = mean();
for (int i = 1; i <= expTime; i++) { q += (x[i]-u)*(x[i]-u);
}
return Math.sqrt(q / (double)(expTime - 1));
}
public double confidenceLo() { // low endpoint of 95% confidence interval double mu = mean();
double sigma = stddev();
return mu - 1.96*sigma / Math.sqrt(expTime);
}
public double confidenceHi() { // high endpoint of 95% confidence interval double mu = mean();
double sigma = stddev();
return mu + 1.96*sigma / Math.sqrt(expTime);
} public static void main(String[] args) { // test client (described below) int N = Integer.parseInt(args[0]);
int T = Integer.parseInt(args[1]);
PercolationStats percStats = new PercolationStats(N, T);
StdOut.printf("mean = %f\n", percStats.mean());
StdOut.printf("stddev = %f\n", percStats.stddev());
StdOut.printf("95%% confidence interval = %f, %f\n",
percStats.confidenceLo(), percStats.confidenceHi()); }
}

Programming Assignment 1: Percolation的更多相关文章

  1. AlgorithmsI Programming Assignment 1: Percolation

    3种版本的答案,第一种使用virtual top and bottom site, 但有backwash的问题,解决这个问题有两种方法: 1. 使用2个WQUUF, 但会增加memory. One f ...

  2. Coursera Algorithms Programming Assignment 1: Percolation(100分)

    题目来源http://coursera.cs.princeton.edu/algs4/assignments/percolation.html 作业分为两部分:建立模型和仿真实验. 最关键的部分就是建 ...

  3. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer

    Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...

  4. Algorithms: Design and Analysis, Part 1 - Programming Assignment #1

    自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...

  5. Algorithms : Programming Assignment 3: Pattern Recognition

    Programming Assignment 3: Pattern Recognition 1.题目重述 原题目:Programming Assignment 3: Pattern Recogniti ...

  6. Programming Assignment 2: Randomized Queues and Deques

    实现一个泛型的双端队列和随机化队列,用数组和链表的方式实现基本数据结构,主要介绍了泛型和迭代器. Dequeue. 实现一个双端队列,它是栈和队列的升级版,支持首尾两端的插入和删除.Deque的API ...

  7. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)

    Please note that when you are working on the programming exercise you will find comments that say &q ...

  8. Programming Assignment 5: Kd-Trees

    用2d-tree数据结构实现在2维矩形区域内的高效的range search 和 nearest neighbor search.2d-tree有许多的应用,在天体分类.计算机动画.神经网络加速.数据 ...

  9. Programming Assignment 4: 8 Puzzle

    The Problem. 求解8数码问题.用最少的移动次数能使8数码还原. Best-first search.使用A*算法来解决,我们定义一个Seach Node,它是当前搜索局面的一种状态,记录了 ...

随机推荐

  1. 再谈Jquery Ajax方法传递到action(转)

    之前写过一篇文章Jquery Ajax方法传值到action,本文是对该文的补充. 假设 controller中的方法是如下: public ActionResult ReadPerson(Perso ...

  2. Dictionary<实体,List<实体>>的比较

    当Dictionary中Key为实体时,进行用ContainsKey比较会发现,就算Model为一样但是结果比较为不存在: 故用以下代码即可,现将Keys转换ToArray(),再用数组的Contai ...

  3. [Hive - LanguageManual] Create/Drop/Alter Database Create/Drop/Truncate Table

    Hive Data Definition Language Hive Data Definition Language Overview Create/Drop/Alter Database Crea ...

  4. 数位DP专题

    这周开始刷数位DP,在网上找到一份神级数位DP模板,做起题目来爽歪歪. http://www.cnblogs.com/jffifa/archive/2012/08/17/2644847.html in ...

  5. jira部署,主机迁移,数据库迁移,jira

    1,linux环境下快速部署; wget http://wpc.29c4.edgecastcdn.net/8029C4/downloads/software/jira/downloads/atlass ...

  6. homework-04 单词方阵

    问题描述 本次作业的题目要求利用给定的一组单词生成一个矩阵,矩阵的每个位置由一个字母填充,单词表中的每一个单词可以匹配矩阵中一段连续的序列,这段序列可以是横向,纵向或者是45度斜角方向,单词可以由左向 ...

  7. spring注解使用

    一.各种注解方式 1.@Autowired注解(不推荐使用,建议使用@Resource) @Autowired可以对成员变量.方法和构造函数进行标注,来完成自动装配的工作.@Autowired的标注位 ...

  8. codeforce 621A(水题)

    A. Wet Shark and Odd and Even time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  9. C#学习笔记(十四):GC机制和弱引用

    垃圾回收(GC) 垃圾回收即Garbage Collector,垃圾指的是内存中已经不会再使用的对象,通过收集释放掉这些对象占用的内存. GC以应用程序的root为基础,遍历应用程序在Heap上动态分 ...

  10. 《解剖PetShop》系列转载

      1 <解剖PetShop>系列之六 PetShop之表示层设计    http://ityup.com/showtopic-8.html 2 <解剖PetShop>系列之五 ...