被数论怒虐了一天 心力憔悴啊 感觉脑细胞已经快消耗殆尽了>_< 但是今天还是会了很多之前觉得特别神的东西

比如BSGS 之前听了两遍 好像都因为听得睡着了没听懂-。- 今天终于硬着头皮学会了~ 做个总结吧 免得又忘记- -

BSGS:

BSGS就是求 A^x=B(mod C) 0<=x<C的解(C为素数)

做一个转换 设m*i+j=x (m=trunc(sqrt(C)))

将A^i(0<=i<m) 存入hash表中(i,A^i)

这样我们就能O(1)求出A^x=B 对应的x的值

设AA=(A^m^i)mod C 枚举i的值(0<=i<m)

原方程就变为 AA*(A^j)=B(mod C)

因为C为素数 所以(AA,C)=1

故 可以用拓展欧几里德求出A^j值为多少 再在hash中找A^j对应的j 答案get

其实不难发现这是个神奇的分块思想 将n分为√n块

预处理使得计算每块的复杂度降为O(1) 到达加速

拓展BSGS:

上题中有一个限制条件 C为素数 如果没有这个条件要怎么做呢

以下是AC大神的做法 由AK大神跟我讲解(orz两个神犇)

A^x=B(mod C)

先将这个方程转换为 A^x+Cy=B

设 A’=A/(A,C),C'=C/((A,C)^z) (C’与(A,C)^z互质)

将方程左右都除以(A,C)^z (如果B不能整除(A,C)^z 则无解)

会得到:

(A'^z)*A^(x-z)+C'y=B/((A,C)^z)

这时 将A'^z视为系数 A与C’互质就能用上面的方法求解了

【数论】Baby Step Giant Step的更多相关文章

  1. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  2. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  3. 【POJ2417】baby step giant step

    最近在学习数论,然而发现之前学的baby step giant step又忘了,于是去翻了翻以前的代码,又复习了一下. 觉得总是忘记是因为没有彻底理解啊. 注意baby step giant step ...

  4. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  5. [置顶] hdu2815 扩展Baby step,Giant step入门

    题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...

  6. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  7. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  8. HDU 2815 扩展baby step giant step 算法

    题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...

  9. 【学习笔记】Baby Step Giant Step算法及其扩展

    1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...

  10. POJ 2417 Discrete Logging ( Baby step giant step )

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3696   Accepted: 1727 ...

随机推荐

  1. 【转】Spring+Hibernate+EHcache配置(一)

    大量数据流动是web应用性能问题常见的原因,而缓存被广泛的用于优化数据库应用.cache被设计为通过保存从数据库里load的数据来减少应用和数据库之间的数据流动.数据库访问只有当检索的数据不在cach ...

  2. Unity3d + NGUI 的多分辨率适配(黑边)

    原地址:http://www.2cto.com/kf/201310/250921.html 一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS设备的分辨率主 ...

  3. 区分JS中的undefined,null,"",0和false

    在程序语言中定义的各种各样的数据类型中,我们都会为其定义一个"空值"或"假值",比如对象类型的空值null,.NET Framework中数据库 字段的空值DB ...

  4. objective-c宏定义

    1.先来几个常用的: // 是否高清屏 #define isRetina ([UIScreen instancesRespondToSelector:@selector(currentMode)] ? ...

  5. js jquery学习

    1.js api   http://api.vfreesoft.com/ 2.26个jquery小技巧  http://www.cnblogs.com/shouce/p/5084565.html 3. ...

  6. Qt 二进制文件读写(使用“魔术数字”)

    今天开始进入 Qt 的另一个部分:文件读写,也就是 IO.文件读写在很多应用程序中都是需要的.Qt 通过 QIODevice 提供了IO的抽象,这种设备(device)具有读写字节块的能力.常用的IO ...

  7. CheckBoxList 获取与设置选中的值

    /// <summary> ///CheckBoxListHelper 的摘要说明 ///CheckBoxList获取与设置选中的值 /// </summary> public ...

  8. pmf,cpmf,pdf,cdf,iid的解释

  9. Convert boolean values to strings 'Yes' or 'No'.

    Convert boolean values to strings 'Yes' or 'No'. Complete the bool_to_word (Javascript: boolToWord ) ...

  10. 错误代码: 1005 Can't create table 'hibernate.bill' (errno: 150)

    主要问题以及解决办法是: 1,MySQL支持外键约束,并提供与其它DB相同的功能,但表(外键表和外键主表)类型必须为 InnoDB,外键表和外键主表的类型都要是innoDB 建表约束语句: user表 ...