[luogu 1880]石子合并
题目描述
在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
题解
我们目测一个dp方程
设f[i][j]表示i到j合并的最小(大)价值
那么
dp的时候按照区间长度递增来dp
首先最大值,根据单调性 肯定是从和转移来的
最小值的时候。这个东西满足四边形不等式
设表示使i~j最优的分界点
首先当时
满足
且
那么枚举中间点的时候只要从枚举到
复杂度证明。。
这样一坨可以两两抓出来消掉
就是这个<=n。复杂度就可证为
这是最小值的做法
#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
#define inf 1001001001
#define infll 1001001001001001001LL
#define ll long long
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
bool f=true;Ri x=0;char ch;while(!isdigit(ch=gc))if(ch=='-')f=false;while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=gc;}return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout); using namespace std;
int n;
int a[2333],s[2333],f[2333][2333],g[2333][2333];
int main(){
n=gi;
for(int i=1;i<=n;i++) a[i]=a[i+n]=gi;
for(int i=1;i<=n+n;i++) s[i]=s[i-1]+a[i];
for(int i=1;i<=n+n;i++) f[i][i]=0,g[i][i]=i;
for(int l=1;l<n;l++)
for(int i=1;i<=2*n-l;i++){
int j=l+i;
f[i][j]=inf/2;
for (int k=g[i][j-1];k<=g[i+1][j];k++)
if (f[i][k-1]+f[k][j]<f[i][j]){
f[i][j]=f[i][k-1]+f[k][j];
g[i][j]=k;
}
f[i][j]+=s[j]-s[i-1];
} int ans=inf;
for(int i=1;i<=n;i++) ans=min(ans,f[i][i+n-1]);
printf("%d\n",ans);
for (int i=1;i<=2*n;i++) f[i][i]=0;
for (int k=1;k<=n-1;k++)
for (int i=1;i<=2*n-k;i++){
int j=i+k;
if (f[i][j-1]>f[i+1][j])
f[i][j]=f[i][j-1]+s[j]-s[i-1];
else
f[i][j]=f[i+1][j]+s[j]-s[i-1];
}
ans=0;
for (int i=1;i<=n;i++) ans=max(ans,f[i][i+n-1]);
printf("%d\n",ans);
return 0;
}
[luogu 1880]石子合并的更多相关文章
- luogu P1880 石子合并
题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- Luogu【P1880】石子合并(环形DP)
先放上luogu的石子合并题目链接 这是一道环形DP题,思想和能量项链很像,在预处理过程中的手法跟乘积最大相像. 用一个m[][]数组来存储石子数量,m[i][j]表示从第 i 堆石子到第 j 堆石子 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- [LUOGU] P1880 [NOI1995]石子合并
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- NOI1995 石子合并 [Luogu P1880]
一道区间dp的模板题,这里主要记一下dp时环形数据的处理. 简略版:方法一:枚举分开的位置,将圈化为链,因此要做n次. 方法二:将链重复两次,即做一个2n-1长度的链,其中第i(i<=n)堆石子 ...
- 经典DP 洛谷p1880 石子合并
https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- RQNOJ 490 环形石子合并
题目链接:https://www.rqnoj.cn/problem/490 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一 ...
- codevs1048 石子合并
题目链接:http://codevs.cn/problem/1048/ 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代 ...
随机推荐
- c# list排序
List<int> tmp = new List<int>(){5,1,22,11,4}; 升序:tmp.Sort((x, y) => x.CompareTo(y)); ...
- C++调用GDAL库读取并输出tif文件,并计算斑块面积输出景观指数:CSD
部分源码选自GDAL库的官方网址:www.gdal.org,其余的代码为笔者自己编写. // readfile.cpp : 定义控制台应用程序的入口点. // /* part of the codes ...
- Win7中隐藏的上帝模式——GodMode
Win7中隐藏的上帝模式——GodMode ~ Windows7中的隐藏模式 ~ 随意新建一个文件夹吧,然后重命名为: GodMode.{ED7BA470-8E54-465E-825C-997 ...
- POJ 2407 Relatives
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13920 Accepted: 6965 Description Give ...
- wordpress使用video.js与七牛云存储实现无广告视频分享应用
video.js是一款极受欢迎的基于HTML5的开源WEB视频播放器,其充分利用了HTML5的视频支持特性,可以实现全平台的无视频插件播放功能,对于现在流行的手机.PAD等移动智能终端有极佳的应用体验 ...
- 去除wordpress由代发
在服务器上安装好wordpress后,通过程序发送邮件却显示...由<www@hostname>代发,解决办法很简单:进入程序文件夹wp-includes修改pluggable.php文件 ...
- Ubuntu14.04 安装 PHP cURL
今天遇到 Fatal error: Call to undefined function curl_init() in /xxx/xxxx/www/application/library/Ku/Htt ...
- ubuntu下安装phpstudy环境记录
下载一键安装包 下载地址:http://www.phpstudy.net/a.php/208.html 安装过程 开启终端 更改文件权限 chmod +x phpstudy 进行安装 ./phpstu ...
- jquery.min.map详见
温故而知新,翻出来阮前辈的文章记录一下 日期:2013年1月23日 上周,jQuery 1.9发布. 这是2.0版之前的最后一个新版本,有很多新功能,其中一个就是支持Source Map. 访问 ht ...
- 2013-07-22 IT 要闻速记快想
### ========================= ### 如何让用户点击广告.观看广告并乐在其中?这个问题的答案精彩纷呈.有的公司开创模式,为点击广告的用户提供优惠券:有的公司想法新奇,让用 ...