A

  首先发现对于2操作,每种素因子可以单独考虑,然后取出步数最多的计入答案,然后分别加上对每种素因子的1操作;

  第二步我犯了个错误,以为最优方案是把素因子指数按二进制操作,在1的位置执行1操作,0的位置执行2操作倍增;

  然后发现是错的,执行一次1操作后,之后的2操作可以完全代替1操作,这样可以节省对其他素因子的1操作...

  

 int getbit(int x)
{
int cur=,res=;
while (cur<x) cur+=cur,res++;
return res;
}
int BigFatInteger::minOperations(int A, int B)
{
initprm();
int ans=,p=;
for (int i= ; i<cnt ; i++) if (A%prm[i]==)
{
int t=;
while (A%prm[i]==) A/=prm[i],t+=B;
ans ++;
p = max(p,getbit(t));
}
return ans+p;
}

B

  题解的思路真的很棒...

  首先为了简化问题,需要猜想+证明一些性质:

  1) 每条边必须是整数; (无理数+无理数=无理数...)

  2) L不能是奇数; (基于性质1,因为多边形形成闭合回路,坐标的奇偶变化是偶数,x0->x0,y0->y0)

  接下来发现L为偶数的时候可以构造出rectangle,于是问题化简为找到一个满足要求的triangle.

  然后根据格点的离散性,对称性,可以把可能的点集缩小,最后o(n2)的暴力枚举/打表.

 struct node{int x,y;};
vector<node>p;
vector<int>d;
int sqt[INF+];
bool check(int x,int y)
{
int dist = x*x+y*y;
if (dist>=INF || !sqt[dist]) return false;
d.push_back(sqt[dist]);
return true;
}
int getdist(node a,node b)
{
int tmp = (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y);
if (tmp>=INF || !sqt[tmp]) return INF;
return sqt[tmp];
}
double find(int l)
{
double res = -1e20;
for (int x= ; x<=l/ ; x++ )
for (int y= ; y<=l/ ; y++ )
if (check(x,y)) p.push_back((node){x,y});
int n = p.size();
for (int i= ; i<n ; i++ )
for (int j=i+ ; j<n ; j++ ) if(d[i]+d[j]<l)
{
int t = getdist(p[i],p[j]);
if (d[i]+d[j]+t!=l) continue;
if (p[i].y*p[j].x==p[i].x*p[j].y) continue;
int tmp = max(d[i],max(d[j],t)) - min(d[i],min(d[j],t));
if (res< || res>tmp) res=tmp;
}
return res;
}
double FindPolygons::minimumPolygon(int L)
{
if (L% || L<) return -1.0;
else
{
for (int i= ; i<= ; i++ ) sqt[i*i]=i;
double ans = find(L);
if (ans>=0.0) return ans;
else return (L%==)?:;
}
}

C

  不在info中的点可以乘一个排列数,问题化简为求满足info的方案数.

  如果确定了info1[i]为a,那么info2[i]只能选取以a为前缀的集合...

  如果info2[i]在info1中还出现过,可以递推下去考虑...

  然后就会发现这个问题涉及到一个树形结构.

  把所有string造成一棵前缀树,重述问题就是:假设info1[i]位置放a,info2[i]位置只能在a的子树中.

  f(x,mask) 表示当前在第i个节点,分配mask集合的方案数.

  答案就是f(root,11..1).

  对于每个f(x,mask)有两种决策,分配给x,不分配.

  然后解决子问题g(x,son,mask2) 表示给x的son分配剩下mask的方案数.

  优化:预处理所有合法状态的转移.

  

 const int mod = (int)1e9 + ;
class SimilarNames {
public:
int count(vector <string>, vector <int>, vector <int>);
};
vector<int>valid,nxt[MASK],sub[MASK],e[maxn];
map<int,int>ha;
const int root = ;
int n,m,k,id[MASK];
int getk(vector<int>u,vector<int>v){
for (int i= ; i<m ; i++ ){
if (!ha.count(u[i])) u[i]=ha[u[i]]=ha.size()-;
if (!ha.count(v[i])) v[i]=ha[v[i]]=ha.size()-;
}
return ha.size();
}
void buildtree(vector<string>names){
sort(names.begin(),names.end());
for (int i= ; i<n ; i++ ){
int fa = root;
for (int j=i- ; j>= ; j-- )
if (names[i].substr(,names[j].size())==names[j]){
fa = j;break;
}
e[fa].push_back(i);
}
}
void pretreat(vector<int>u,vector<int>v){
memset(id,-,sizeof(id));
for (int i=,j ; i<(<<k) ; i++ ){
for ( j= ; j<m ; j++ ){
int p = <<ha[u[j]];
int q = <<ha[v[j]];
if ((i&p) && ((i&q)==)) break;
}
if (j==m) {
valid.push_back(i);
id[i] = valid.size()-;
}
}
for (int i= ; i<(int)valid.size() ; i++ )
for (int j= ; j<k ; j++ ) if(valid[i]&(<<j)){
if (id[valid[i]^(<<j)]!=-)
nxt[i].push_back(id[valid[i]^(<<j)]);
}
for (int i= ; i<(int)valid.size() ; i++ )
for (int j=valid[i] ; ; j=(j-)&valid[i]){
if (id[j]!=- && id[valid[i]-j]!=-)
sub[i].push_back(id[j]);
if (!j) break;
}
}
int f[maxn][MASK],g[maxn][MASK];
int add(int &x,int y){
x += y;
while (x>=mod) x-=mod;
return x;
}
int getg(int cur,int s,int mask){
if (s>=) return g[e[cur][s]][mask];
else return !valid[mask];
}
void dfs(int cur){
int s = e[cur].size();
for (int i= ; i<s ; i++ )
dfs(e[cur][i]); for (int i= ; i<s ; i++ ){
for (int j= ; j<(int)valid.size() ; j++ ){
for (int x= ; x<(int)sub[j].size() ; x++ ){
int A = valid[j];
int B = valid[sub[j][x]];
int p = getg(cur,i-,id[B]);
int q = f[e[cur][i]][id[A-B]];
g[e[cur][i]][j] = add(g[e[cur][i]][j],((llong)p*q)%mod);
}
}
} for (int i= ; i<(int)valid.size() ; i++ ){
f[cur][i] = add(f[cur][i],getg(cur,s-,i));
if (cur!=root){
for (int j= ; j<(int)nxt[i].size() ; j++ )
f[cur][i] = add(f[cur][i],getg(cur,s-,nxt[i][j]));
}
}
}
int SimilarNames::count(vector <string> names, vector <int> u, vector <int> v){
n = names.size();
m = u.size();
k = getk(u,v);
buildtree(names);
pretreat(u,v);
dfs(root);
llong ans = f[root][id[(<<k)-]];
for (int i=n-k ; i> ; i-- ) ans = (llong)(ans*i)%mod;
return (int)ans;
}

  

SRM 599 DIV1的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  3. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  4. 图论 SRM 674 Div1 VampireTree 250

    Problem Statement      You are a genealogist specializing in family trees of vampires. Vampire famil ...

  5. SRM 583 DIV1

    A 裸最短路. class TravelOnMars { public: int minTimes(vector <int>, int, int); }; vector<int> ...

  6. SRM 590 DIV1

    转载请注明出处,谢谢viewmode=contents">http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlov ...

  7. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  8. 状态压缩DP SRM 667 Div1 OrderOfOperations 250

    Problem Statement      Cat Noku has just finished writing his first computer program. Noku's compute ...

  9. 数学 SRM 690 Div1 WolfCardGame 300

    Problem Statement      Wolf Sothe and Cat Snuke are playing a card game. The game is played with exa ...

随机推荐

  1. JS浏览器对象-window对象

    代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...

  2. HBase的rowkey的设计原则

    HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定 ...

  3. WPF自定义下拉控件

    可以搜索的下拉条 using System; using System.Collections; using System.Collections.Generic; using System.Coll ...

  4. javascript中this、apply、call、bind的用法和区别

    参考阮一峰文章链接:http://javascript.ruanyifeng.com/oop/basic.html#toc10

  5. CSS常用选择器

    关于CSS常用选择器: 1.ID选择器 关于ID选择器具有唯一性,在文档流中,ID是唯一的,在低版本的浏览器中,允许出现不适唯一ID的情况,而在高版本的浏览器中,出现ID不唯一的情况浏览器会出现的报错 ...

  6. [React] React Router: Named Components

    In this lesson we'll learn how to render multiple component children from a single route. Define a n ...

  7. IIS无法启动问题的解决

    IIS无法启动,显示“服务并未即使响应启动或控制请求”,我用两种办法都没有解决:1.把IIS卸载重装也不行:2.到服务中world wide web publishing服务也不能启动,提示127错误 ...

  8. NPM与调试工具的使用

    1)NPM 2)nodemon 自动监视文件的变化并重启应用 3)pm2 启动node,资源共享 4)node-inspector node调试工具 5)Chrome Developer Tools

  9. C复习手记(Day1)

    auto存储类:所有局部变量默认的存储类  ex:{int mount;auto int month}  auto只用在函数内,只做局部变量 register 存储类:register 存储类用于定义 ...

  10. js_day2

    1)<script src="dsad.js"> 不是  scr= 2)