【模式识别】Boosting
Boosting简单介绍
分类中通常使用将多个弱分类器组合成强分类器进行分类的方法,统称为集成分类方法(Ensemble Method)。比較简单的如在Boosting之前出现Bagging的方法,首先从从总体样本集合中抽样採取不同的训练集训练弱分类器,然后使用多个弱分类器进行voting,终于的结果是分类器投票的优胜结果。这样的简单的voting策略通常难以有非常好的效果。直到后来的Boosting方法问世,组合弱分类器的威力才被发挥出来。Boosting意为加强、提升,也就是说将弱分类器提升为强分类器。而我们常听到的AdaBoost是Boosting发展到后来最为代表性的一类。所谓AdaBoost,即Adaptive Boosting,是指弱分类器依据学习的结果反馈Adaptively调整如果的错误率,所以也不须要不论什么的先验知识就能够自主训练。Breiman在他的论文里赞扬AdaBoost是最好的off-the-shelf方法。
两类Discrete AdaBoos算法流程
AdaBoosting方法大致有:Discrete Adaboost, Real AdaBoost, LogitBoost, 和Gentle AdaBoost。全部的方法训练的框架的都是类似的。以Discrete Adaboost为例,其训练流程例如以下:
首先初始化每一个样本同样的权重(步骤2);之后使用加权的样本训练每一个弱分类器 (步骤3.1);分类后得到加权的训练错误率和比例因子 (步骤3.2);将被错误分类的样本的权重加大,并将改动后的权重再次归一化(步骤3.3);循环训练过程,终于使用比例因子 组合组合弱分类器构成终于的强分类器。
以下看一个更形象的图,多个弱分类器的组合过程和结果大致为:
训练的循环过程,加重被错误分类的样本的权重是一种有效的加速训练的方法。因为训练中正确率高的弱分类器权重较大,新一轮的训练中正确分类的样本会越来越多,权重较小的训练样本对在新一轮的训练中起作用较小,也就是,每一轮新的训练都着重训练被错误分类的样本。
实际训练中弱分类器是一样的,但弱分类器实际使用的训练数据不同,通常使用特征向量的每一维分别构成一个弱分类器。而后来大名鼎鼎的Haar+Adaboost人脸检測方法是使用每种Haar特征构成一个弱分类器,基于Block的Haar特征比简单的基于pixel的特征有带有很多其它的信息,通常能得到更好的检測效果,而积分图Integral的方法使其在计算速度上也有非常大优势。有兴趣可參考《基于Adaboost和Haar-like特征人脸识别》。
Real AdaBoost和Gentle AdaBoost
(转载请注明作者和出处:http://blog.csdn.net/xiaowei_cqu 未经同意请勿用于商业用途)
【模式识别】Boosting的更多相关文章
- 模式识别与机器学习—bagging与boosting
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简 ...
- 深度学习 vs 机器学习 vs 模式识别
http://www.csdn.net/article/2015-03-24/2824301 [编者按]本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人Tomasz Malisie ...
- 计算机视觉与模式识别代码合集第二版two
Topic Name Reference code Image Segmentation Segmentation by Minimum Code Length AY Yang, J. Wright, ...
- 计算机视觉与模式识别代码合集第二版three
计算机视觉与模式识别代码合集第二版three Topic Name Reference code Optical Flow Horn and Schunck's Optical Flow ...
- boosting、adaboost
1.boosting Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数.他是一种框架算法,主要是通过对样本集的操作获 ...
- [Mechine Learning & Algorithm] 集成学习方法——Bagging和 Boosting
使用机器学习方法解决问题时,有较多模型可供选择. 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择) 因为不同的模 ...
- paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...
- 转载:bootstrap, boosting, bagging 几种方法的联系
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...
- Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结
Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结 1.1. 五中滤镜的分别效果..1 1.2. 基于肤色的图片分类1 1.3. 性能提升2 1.4. --co ...
随机推荐
- struts.xml的配置
<?xml version="1.0" encoding="UTF-8"?> <!--第一行必须这样写,这句话必须放在第一行--> &l ...
- BZOJ 1618: [Usaco2008 Nov]Buying Hay 购买干草
题目 1618: [Usaco2008 Nov]Buying Hay 购买干草 Time Limit: 5 Sec Memory Limit: 64 MB Submit: 679 Solved: ...
- asp.net mvc 下载文件 txt doc xsl 等等
不废话,直接上代码,就是这么简单 public FileStreamResult StreamFileFromDisk() { // string path = AppDomain.Current ...
- BZOJ 1053 反素数ant
初读这道题,一定有许多疑惑,其中最大的疑惑便是"反素数",反素数的概念很简单,就是,a<b同时a的因数个数大于b的因数个数.但是想要完成本题还需要一些信息,关于 ...
- [Swust OJ 567]--老虎在不在笼子里(凸包问题)
题目链接:http://acm.swust.edu.cn/problem/567/ Time limit(ms): 1000 Memory limit(kb): 65535 一只老虎自从看了< ...
- Easyui datagrid 批量编辑和提交
<script type="text/javascript"> $(function() { var $dg = $("#dg"); $dg.dat ...
- json_response的用法
传统的方法是当我们处理一个表单时,我们Post数据给服务器,服务器对数据进行处理后将数据返回给用户,此时部分写法是用页面刷新的方式将页面重新刷新一次呈现给用户,这样的话用户相当于读入了两次页面,人一多 ...
- 基于visual Studio2013解决C语言竞赛题之0513字符拷贝
题目 解决代码及点评 /************************************************************************/ /* 13. 将字符数 ...
- android——ListView功能的实现
1.main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:a ...
- POJ 2485:Highways(最小生成树&&prim)
Highways Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 21628 Accepted: 9970 Descrip ...