对于d, 记{ai}中是d的倍数的数的个数为c, 那么有:

直接计算即可,复杂度O(NlogN+MlogM)

---------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
typedef long long ll;
 
const int MOD = 1000000007;
const int maxn = 300009;
 
int ans[maxn];
int N, M, K, seq[maxn], cnt[maxn];
int Inv[maxn], Fac[maxn];
 
void gcd(int a, int b, int &d, int &x, int &y) {
if(!b) {
d = a;
x = 1;
y = 0;
} else {
gcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
 
int INV(int v) {
int d, x, y;
gcd(v, MOD, d, x, y);
return (x + MOD) % MOD;
}
 

void Init() {

Inv[0] = INV(Fac[0] = 1);
for(int i = 1; i <= N; i++) {
Fac[i] = ll(i) * Fac[i - 1] % MOD;
Inv[i] = INV(Fac[i]);
}
}
 
int C(int m, int n) {
return ll(Fac[n]) * Inv[n - m] % MOD * Inv[m] % MOD;
}
 

int Power(int x, int t) {

int ret = 1;
for(; t; t >>= 1, x = ll(x) * x % MOD)
if(t & 1) ret = ll(x) * ret % MOD;
return ret;
}
 

int main() {

memset(cnt, 0, sizeof cnt);
scanf("%d%d%d", &N, &M, &K);
for(int i = 0; i < N; i++) {
scanf("%d", seq + i);
cnt[seq[i]]++;
}
Init();
for(int i = M; i; i--) {
int c = 0;
for(int j = i; j <= M; j += i)
if(cnt[j]) c += cnt[j];
if(c + K < N) {
ans[i] = 0; continue;
}
ans[i] = (ll) Power(M / i, N - c) * C(N - K, c) % MOD * Power(M / i - 1, c - N + K) % MOD;
for(int j = i << 1; j <= M; j += i)
if((ans[i] -= ans[j]) < 0) ans[i] += MOD;
}
printf("%d", ans[1]);
for(int i = 2; i <= M; i++)
printf(" %d", ans[i]);
return 0;
}

---------------------------------------------------------------------------

4305: 数列的GCD

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 149  Solved: 68
[Submit][Status][Discuss]

Description

给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N)。 
现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., b[N],满足: 
(1)1<=b[i]<=M(1<=i<=N); 
(2)gcd(b[1], b[2], ..., b[N])=d; 
(3)恰好有K个位置i使得a[i]<>b[i](1<=i<=N) 
注:gcd(x1,x2,...,xn)为x1, x2, ..., xn的最大公约数。 
输出答案对1,000,000,007取模的值。 

Input

第一行包含3个整数,N,M,K。 
第二行包含N个整数:a[1], a[2], ..., a[N]。 

Output

输出M个整数到一行,第i个整数为当d=i时满足条件的不同数列{b[n]}的数目mod 1,000,000,007的值。 

Sample Input

3 3 3
3 3 3

Sample Output

7 1 0

HINT

当d=1,{b[n]}可以为:(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)。 

当d=2,{b[n]}可以为:(2, 2, 2)。 

当d=3,因为{b[n]}必须要有k个数与{a[n]}不同,所以{b[n]}不能为(3, 3, 3),满足条件的一个都没有。 

对于100%的数据,1<=N,M<=300000, 1<=K<=N, 1<=a[i]<=M。 

Source

BZOJ 4305: 数列的GCD( 数论 )的更多相关文章

  1. bzoj 4305 数列的GCD

    LINK:数列的GCD 题意: 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], ...

  2. 【BZOJ 4305】 4305: 数列的GCD (数论)

    4305: 数列的GCD Description 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N).  现在问题是,对于1到M的每个整数d,有多少个不 ...

  3. BZOJ 2820: YY的GCD | 数论

    题目: 题解: http://hzwer.com/6142.html #include<cstdio> #include<algorithm> #define N 100000 ...

  4. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  5. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  6. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  7. bzoj 4303 数列

    bzoj 4303 数列 二维 \(KD-Tree\) 模板题. \(KD-Tree\) 虽然在更新和查询的方式上类似于线段树,但其本身定义是类似于用 \(splay/fhq\ treap\) 维护区 ...

  8. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  9. [BZOJ 2989]数列(二进制分组+主席树)

    [BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...

随机推荐

  1. Trailing Zeroes (III)(lightoj 二分好题)

    1138 - Trailing Zeroes (III)   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit:  ...

  2. Swift初体验(三)

    /*******************************************************************************/ // 协议 protocol Des ...

  3. Pig Latin儿童黑话(java)

     ●假设单词以辅音字母開始,将词首的辅音字母字符串(第一个元音字母前的全部字母)从单词的开头移动到末尾,然后加上后缀ay,这样就形成了它的pig  latin. ●假设单词以元音字母開始,仅仅须要 ...

  4. VBA 开发学习--基础语法3

    VBA字符串函数列表 Trim(string) 去掉string左右两端空白 Ltrim(string) 去掉string左端空白 Rtrim(string) 去掉string右端空白 Len(str ...

  5. <转>ASP.NET学习笔记之MVC 3 数据验证 Model Validation 详解

    MVC 3 数据验证 Model Validation 详解  再附加一些比较好的验证详解:(以下均为引用) 1.asp.net mvc3 的数据验证(一) - zhangkai2237 - 博客园 ...

  6. hive join 优化

    common join : 即reducer join,瓶颈在shuffle阶段,会产生较大的网络io: map join:即把小表放前面,扫描后放入每个节点的内存,在map阶段进行匹配: 开启map ...

  7. linq中的GroupBy总结

    1.简单形式: var q = from p in db.Products group p by p.CategoryID into g select g; 语句描述:Linq使用Group By按C ...

  8. static_cast,const_cast,dynamic_cast,reinterpret_cast

    除非必要,尽量不要对变量进行强制转换.这是因为强制转换是存在风险的,但实际上在某种情况下,转型是必需的. 旧式C转型方式为(type)expression,即由一对小括号加上一个对象名称组成,而这种语 ...

  9. 如何升级CentOS 6.5下的MySQL

    如何升级CentOS 6.5下的MySQL http://jingyan.baidu.com/article/48a42057e9b9bca9242504ab.html | 浏览:1136 | 更新: ...

  10. Hadoop学习之YARN框架

    转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/,非常感谢分享! 对于业界的大数据存储及分布式处理系统来说,H ...