Face recognition using Histograms of Oriented Gradients

这篇论文的主要内容是将Hog算子应用到人脸识别上。

转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/40757997

1. Main Contribution

  • Extract Hog descriptors from a regular grid.

  • Fusion of HOG descriptors at different scales allows to capture important structure

  • Dimensionality reduction is necessary to make the classification less prone to over-fitting.

2. Feature Conclusion

Features includes geometric or photometric, latter seems to have prevailed in the literature:

  • Eigenfaces( Principal Component Analysis)
  • Gabor wavelets
  • Local Binary Patterns
  • Error-Correcting Output Codes
  • Independent Component Analysis

3. Improved Hog

Improved Hog for invariance to scale and rotation may be also achieved by extracting descriptors from only salient points (key points) in the scale space following a rotation normalization. The steps involved are:

  • Scale-space extrema detection. (achieve scale invariance)
  • Orientation assignment. (find the dominant gradient orientation)
  • Descriptor extraction.

4. Previous Hog representation for faces

In (Albiol et al., 2008), the authors successfully applied Hog to the face recognition.

  • In the 2008 paper, faces are previous normalized in scale and orientation, So the step for scale-space extrema detection were not necessary.
  • A set of 25 facial landmarks were localizaed using Active Apperence Models(AAMs).
  • Hog descriptors are extracted from the vicinity of each of these 25 landmarks.
  • Using nearest neighbor and Enclidean distance to classify.

Drawback of this method:

  • Final error may crucially depend on the reliability of the landmark localizations, and the landmarks are not precisely due to occlusions, strong illuminations or pose changes.

5. Improved Method by this paper

  • First normalize the face and then extract HOG features from a regular grid. The grid is formed by placing equal side patches around a first cell centered in the image, until the whole image is covered.
  • The paper hypothesize that a better result could be obtained by combining information from different patch sizes. And the paper considered a new fusion strategy that is the product combination of the classifiers at patch sizes.
  • Several overlapping patches are used, so the final feature representation will be highly redundant, So dimensionality reduction is necessary.

5.1 Detail of the fusion strategy

  • R individual classifications c_k (k=1,…,R), each one trained using Hog features with different patch sizes. Each classifier gives one input sample x_k a posterior probability vector:

  • The product rule cosists of fusing the final decision as:

6. Experiments

  • Effect of the facial feature localization error on the final recognition performance. Large error on the localization of facial features leads to bad classification performance.

    • Evaluate the performance of the method in 4.
    • Calculate the dispersion of coordinates(ellpse fitting) and the total sum of variances of the localized landmarks. Bigger variance, bad performance.
  • Extracting regular grids and patch size combination
    • Hog features are processed by PCA and LDA.
    • Nearest classifier with Enclidean and cosine distances is used.
    • Combination of 8×8, 12×12, 16×16, 20×20, 24×24, 28×28 patches.
    • Compare of computation time of the landmark method and the regular grid method.

7. Reference

  • [1]. Déniz O, Bueno G, Salido J, et al. Face recognition using histograms of oriented gradients[J]. Pattern Recognition Letters, 2011, 32(12): 1598-1603.

Face recognition using Histograms of Oriented Gradients的更多相关文章

  1. 行人检測之HOG特征(Histograms of Oriented Gradients)

    之前的文章行人计数.计次提到HOG特征这个概念,这两天看了一下原版的论文,了解了一下HOG特征的原理,并依据自己的理解将这种方法的流程写了下来,假设有不正确的地方欢迎指正. HOG(Histogram ...

  2. (转)梯度方向直方图HOG(Histograms of Oriented Gradients )

    HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视 ...

  3. 机器视觉 Histogram of oriented gradients

    Histogram of oriented gradients 简称 HoG, 是计算机视觉和图像处理领域一种非常重要的特征,被广泛地应用于物体检测,人脸检测,人脸表情检测等. HoG 最早是在200 ...

  4. 【翻译】HOG, Histogram of Oriented Gradients / 方向梯度直方图 介绍

    本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/ ...

  5. SIFT(Scale-invariant feature transform) & HOG(histogram of oriented gradients)

    SIFT :scale invariant feature transform HOG:histogram of oriented gradients 这两种方法都是基于图像中梯度的方向直方图的特征提 ...

  6. 【笔记】HOG (Histogram of Oriented Gradients, 方向梯度直方图)的开源实现

    wiki上的介绍 OpenCV的实现 cv::HOGDescriptor Struct Reference opencv cv::HOGDescriptor 的调用例子 HOGDescriptor h ...

  7. 【计算机视觉】Selective Search for Object Recognition论文阅读3

    Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong       在前 ...

  8. Histogram of Oriented Gridients(HOG) 方向梯度直方图

    Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同 ...

  9. 【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图

    Histogram of Oriented Gridients(HOG) 方向梯度直方图 Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很 ...

随机推荐

  1. python 下的数据结构与算法---8:哈希一下【dict与set的实现】

    少年,不知道你好记不记得第三篇文章讲python内建数据结构的方法及其时间复杂度时里面关于dict与set的时间复杂度[为何访问元素为O(1)]原理我说后面讲吗?其实就是这篇文章讲啦. 目录: 一:H ...

  2. Mysql数据数据[字节、长度、数据范围]一览表

    1.mysql有哪些数据类型: 主要包括以下五大类: 整数类型:BIT.BOOL.TINY INT.SMALL INT.MEDIUM INT. INT. BIG INT 浮点数类型:FLOAT.DOU ...

  3. 无法连接vCenter Server清单https://IP:10443

    VMware vCenter Server服务器安装系统的时候使用一个IP,安装完VMware vCenter后来更换了另外一个IP,当使用vSphere Web Client登陆VMware vCe ...

  4. oracle中 connect by prior 递归算法 -- 理解

    oracle中 connect by prior 递归算法 -- 理解 http://blog.163.com/xxciof/blog/static/7978132720095193113752/  ...

  5. UI中的七种手势

    // // GestureRecognizerViewController.m #import "GestureRecognizerViewController.h" #impor ...

  6. mysql学习(用户权限管理)

    1. 添加数据库用户 create user 'username'@'host' identified by 'password'; 提示: 如果想让该用户可以从其他主机登陆,host可以设置为'%' ...

  7. redux-simple 简化版的redux

    作为react的粉丝,当然要吐槽一下react组件通信问题.react的单向数据流是组件通信的一大阻碍,只允许父组件向子组件传值,子组件向父组件传值只能通过父组件向子组件传递回调函数实现.如果在深层次 ...

  8. Mysql 查询性能优化

    查询优化,索引优化,库表结构优化需要齐头并进,一个不能落. 为什么查询速度会慢 在阐释编写快速的查询之前,需要清楚一点,真正重要的是响应时间.如果把查询看做是一个任务的话,那么它由一系列子任务构成,每 ...

  9. rpc和websocket的区别

    虽然很久以前用过rpc但是当时没用过websocket,也没做过对比,现在就对比一下 rpc的用法是客户端直接调用服务端的函数,其实他就是把数据传给服务端,服务端处理完以后返回给客户端, websoc ...

  10. KACK的处理方法

    demo: .eq { color:#f00;/*标准浏览器*/ color:#f30\0;/*IE8,IE9,opera*/ *color:#c00;/*IE7及IE6*/ _color:#600; ...