Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.

 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".

 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 

题意:给出n个长方体的三边,求叠罗汉能叠的最高高度,要求上面长方体的底面积要小于下面的,每个长方体可以无限取

思路:用大了贪心的思想,由于n只有30,而且三边位置可以变化,可以将所有情况全部存起来再拍一次序,然后再将所有状况进行一次循环找出最大值

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; struct node
{
int x,y,z;
} dp[35*3]; int hei[35*3]; int cmp(node a,node b)
{
if(a.x!=b.x)
return a.x<b.x;
if(a.y!=b.y)
return a.y<b.y;
a.z<b.z;
} int main()
{
int n,a,b,c,i,j,maxn,ans,cas = 1;
while(~scanf("%d",&n),n)
{
for(i = 0; i<n; i++)
{
scanf("%d%d%d",&a,&b,&c);
dp[i*3+0].x = a>b?a:b;
dp[i*3+0].y = a>b?b:a;
dp[i*3+0].z = c;
dp[i*3+1].x = b>c?b:c;
dp[i*3+1].y = b>c?c:b;
dp[i*3+1].z = a;
dp[i*3+2].x = a>c?a:c;
dp[i*3+2].y = a>c?c:a;
dp[i*3+2].z = b;
}
sort(dp,dp+3*n,cmp);
hei[0] = ans = dp[0].z;
for(i = 1; i<n*3; i++)
{
maxn = 0;
for(j = 0; j<i; j++)
{
if(dp[j].x<dp[i].x && dp[j].y<dp[i].y && hei[j]>maxn)
maxn = hei[j];
hei[i] = maxn+dp[i].z;
if(hei[i]>ans)
ans = hei[i]; }
}
printf("Case %d: maximum height = %d\n",cas++,ans);
} return 0;
}

HDU1069:Monkey and Banana(DP+贪心)的更多相关文章

  1. kuangbin专题十二 HDU1069 Monkey and Banana (dp)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU1069 Monkey and Banana —— DP

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS ...

  3. HDU1069 Monkey and Banana

    HDU1069 Monkey and Banana 题目大意 给定 n 种盒子, 每种盒子无限多个, 需要叠起来, 在上面的盒子的长和宽必须严格小于下面盒子的长和宽, 求最高的高度. 思路 对于每个方 ...

  4. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. HDU 1069 Monkey and Banana(DP 长方体堆放问题)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  6. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  7. HDU1069 - Monkey and Banana【dp】

    题目大意 给定箱子种类数量n,及对应长宽高,每个箱子数量无限,求其能叠起来的最大高度是多少(上面箱子的长宽严格小于下面箱子) 思路 首先由于每种箱子有无穷个,而不仅可以横着放,还可以竖着放,歪着放.. ...

  8. HDU1069 Monkey and Banana(dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 题意:给定n种类型的长方体,每个类型长方体无数个,要求长方体叠放在一起,且上面的长方体接触面积要小于 ...

  9. HDU-1069 Monkey and Banana DAG上的动态规划

    题目链接:https://cn.vjudge.net/problem/HDU-1069 题意 给出n种箱子的长宽高 现要搭出最高的箱子塔,使每个箱子的长宽严格小于底下的箱子的长宽,每种箱子数量不限 问 ...

随机推荐

  1. jQuery简单前端表单验证

    <!DOCTYPE html> <html> <head> <title>表单验证</title> <script src=" ...

  2. 关于yii2的gridview关联搜索步骤

    在使用yii2构建搜索视图,经常都会使用到gridview这个组件,这个组件十分强大,通过一定的配置就能进行关联搜索,下面就是简单的步骤 需求场景:一个车系表,里面存放在品牌表的id,现在要用品牌名字 ...

  3. struts2笔记07-action扩展名

    1.action扩展名 默认扩展名可以去/org/apache/struts2/default.properties中查看 struts.action.extension=action,, defau ...

  4. javascript学习笔记(2)

    <html> <head><title>Throwing die</title><script>    var canv_width  = ...

  5. 【Chromium中文文档】Chrom{e,ium}{,OS}中的硬件视频加速

    Chrom{e,ium}{,OS}中的硬件视频加速 转载请注明出处:https://ahangchen.gitbooks.io/chromium_doc_zh/content/zh//General_ ...

  6. 扩展C++ string类

    在实际开发过程中,C++string类使用起来有很多不方便的地方,笔者根据根据这些不足简单的扩展了这个类,如增加与数字之间的相互转化和格式化字符串.不足的地方望指正.读者也可以根据自己需求继续扩展. ...

  7. boost库在工作(40)串行通讯

    现代的计算机技术进步很快,各种的通讯也日新月异,像USB.网络.蓝牙.WIFI等通讯技术飞速地出现,改变了整个计算机的通讯能力,速度已经达到GBit级别.但是有一种最原始的通讯方式,还是保留了30年, ...

  8. collection系列用法-deque双向队列

    deque双向队列 Deque可以从两端添加和删除元素.常用的结构,是它的简化版本. Deque支持序列的常用操作,现在举一个简单例子,你会发现其实跟平成的list没啥区别: import colle ...

  9. frameset常用属性

    框架是网页画面分成几个框窗(不同的窗口对应不同页面以几个网页的形式显示),同时取得多个 src的地址.页面所有框架标记需要放在一个总起的 html 档,这个档案只记录了该框架如何分割 ,不会显示任何资 ...

  10. HDU ACM 1046 Gridland 找规律

    分析:给出一个矩阵.问最短从一个点经过全部点以此回到起点的长度是多少.绘图非常好理解.先画3*4.3*3.4*4的点阵图案.试着在上面用最短路走一走,能够发现当矩形点阵的长宽都是奇数时,最短路中必然有 ...