求LIS , 然后用 n 减去即为answer

----------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
 
#define rep( i , n ) for( int i = 0 ;  i < n ; ++i )
#define clr( x , c ) memset( x , c , sizeof( x ) )
 
using namespace std;
 
const int maxn = 30000 + 5;
const int inf = 0x3f3f3f3f;
 
int num[ maxn ];
 
int d[ maxn ] , g[ maxn ];
 
int main() {
// freopen( "test.in" , "r" , stdin );
int n;
cin >> n;
rep( i , n ) 
   scanf( "%d" , num + i );
   
clr( g , inf );
int ans = 0;
rep( i , n ) {
int t = upper_bound( g , g + n , num[ i ] ) - g;
g[ t ] = num[ i ];
ans = max( t + 1 , ans );
}
clr( g , inf );
for( int i = n - 1 ; i >= 0 ; i-- ) {
int t = upper_bound( g , g + n , num[ i ] ) - g;
g[ t ] = num[ i ];
ans = max( t + 1 , ans );
}
cout << n - ans << "\n";
return 0;
}

----------------------------------------------------------------------------

1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 1068  Solved: 638
[Submit][Status][Discuss]

Description

为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。 第i头奶牛有一张标明她用餐批次D_i(1 <= D_i <= 3)的卡片。虽然所有N(1 <= N <= 30,000)头奶牛排成了很整齐的队伍但谁都看得出来,卡片上的号码是完全杂乱无章的。 在若干次混乱的重新排队后,FJ找到了一种简单些的方法:奶牛们不动,他沿着队伍从头到尾走一遍把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个他想要的每个组中的奶牛都站在一起的队列,例如111222333或者333222111。哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让所有奶牛向后转,然后按正常顺序进入餐厅。 你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。

Input

第1行: 1个整数:N 第2..N+1行: 第i+1行是1个整数,为第i头奶牛的用餐批次D_i

Output

第1行: 输出1个整数,为FJ最少要改几头奶牛卡片上的编号,才能让编号变成他设想中的样子

Sample Input

5
1
3
2
1
1
输入说明:

队列中共有5头奶牛,第1头以及最后2头奶牛被设定为第一批用餐,第2头奶牛的预设是第三批用餐,第3头则为第二批用餐。

Sample Output

1

输出说明:

如果FJ想把当前队列改成一个不下降序列,他至少要改2头奶牛的编号,一种可行的方案是:把队伍中2头编号不是1的奶牛的编号都改成1。不过,如果FJ选择把第1头奶牛的编号改成3就能把奶牛们的队伍改造成一个合法的不上升序列了。

HINT

Source

BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐( LIS )的更多相关文章

  1. Bzoj 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 二分

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1272  Solve ...

  2. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按F ...

  3. BZOJ 1609 [Usaco2008 Feb]Eating Together麻烦的聚餐:LIS & LDS (nlogn)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1609 题意: 给你一个只由数字"1,2,3"组成的序列a[i],共n个 ...

  4. bzoj 1609[Usaco2008 Feb]Eating Together麻烦的聚餐【dp】

    设up[i][j]为第i位升序为j的最小修改数,down为降序 #include<iostream> #include<stdio.h> using namespace std ...

  5. 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 1010  Solv ...

  6. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐(dp+被坑)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1609 首先我不得不说,我被这题坑了.题目前边没有说可以不需要3种牛都有啊!!!!!!!!然后我一直在 ...

  7. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    [算法]动态规划 [题解]DP有个特点(递推的特点),就是记录所有可能状态然后按顺序转移. 最优化问题中DP往往占据重要地位. f[i][j]表示前i头奶牛,第i头改为号码j的最小改动数字,这样每头奶 ...

  8. BZOJ1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 938  Solved ...

  9. [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

随机推荐

  1. Tensorflow tflearn 编写RCNN

    两周多的努力总算写出了RCNN的代码,这段代码非常有意思,并且还顺带复习了几个Tensorflow应用方面的知识点,故特此总结下,带大家分享下经验.理论方面,RCNN的理论教程颇多,这里我不在做详尽说 ...

  2. MySQL 二进制日志过滤

    binlog_do_db; binlog_ignore_db; 这个两个参数是用来控制对哪个数据库的更改要记录日志:下面以binlog_ignore_db为例子. 假如binlog_ignore_db ...

  3. Toolkit 一键激活Office 2010方法及Office 2010 Toolkit工具下载

    Office 2010激活的方法很多,但推荐使用本站亲测,可永久使用的两种方法,随便使用哪一种,一个不行就换另外一个.基本上只要Office 2010正常安装了,下面两种方法的任何一种都可以正常激活. ...

  4. POJ 1743 Musical Theme(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=1743 [题目大意] 给出一首曲子的曲谱,上面的音符用不大于88的数字表示, 现在请你确定它主旋律的长度,主旋律指的是出现超过一次, ...

  5. PHP计划任务:如何使用Linux的Crontab执行PHP脚本

    我们的PHP程序有时候需要定时执行,我们可以使用ignore_user_abort函数或是在页面放置js让用户帮我们实现.但这两种方法都不太可靠,不稳定.我们可以借助Linux的Crontab工具来稳 ...

  6. 第七届河南省赛A.物资调度(dfs)

    10401: A.物资调度 Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 95  Solved: 54 [Submit][Status][Web Bo ...

  7. qt4.8.4安装以及64位程序编译方法

    本文将使用简单的几个步骤说明在vc2008和64位的操作系统下如何编译安装x64Qt软件 首先必须保证你所使用的系统是64bit的操作系统,本次我们使用的系统是windows7 professiona ...

  8. HTML5新特性之CSS+HTML5实例

    1.新的DOCTYPE和字符集 HTML5的一项准则就是化繁为简,Web页面的DOCTYPE被极大的简化. <!DOCTYPE html> 同时字符集声明也被简化了: <meta c ...

  9. j详细说明ava于clone办法

    原文地址:http://leihuang.org/2014/11/14/java-clone/ In java, it essentially means the ability to create ...

  10. 度小于所述过程:es.exe

    在防火墙管理,见未知的过程"es.exe" 程序信息: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGVzdGNzX2Ru/font ...