hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2049 Accepted Submission(s): 746
Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
70.00
题意:秦始皇修路要把所有的城市都连通,每个城市有相应的人口数,每条路有相应的修路费。
现在可以选一条magic路,修路费变为0,以A代表magic 路两端的人口数和。B代表总路费。
选一条路作为magic路,使A/B最大。
分析:不能用贪心,因为A与B相互制约。
要使A/B最大,那么B应该最小。故先求出n个点的最小生成树。再枚举
每一条边,假设最小生成树的值是B, 而枚举的那条边长度是edge[i][j], 如果这一条边已经
是属于最小生成树上的,那么最终式子的值是A/(B-edge[i][j])。如果这一条不属于最小生成
树上的, 那么添加上这条边,就会有n条边,那么就会使得有了一个环,为了使得它还是一
个生成树,就要删掉环上的一条边。 为了让生成树尽量少,那么就要删掉除了加入的那条边
以外,权值最大的那条路径。 假设删除的那个边的权值是Max[i][j], 那么就是A/(B-Max[i][j]).
即:如果把这条边当作magic road的话,那么这条边以及连接u v 的mst的边就组成了一个环了
当前这条边的权值是最大的,要使剩下的路的花费最小,那么肯定要把u v间的最长的一条边给删
去就行了,也就是找环中的第二大边了。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std; struct node
{
double x,y;
double peo;
}city[1010];
int vis[1010],mark[1010][1010],pre[1010];
double maps[1010][1010],dis[1010],maxedge[1010][1010];
int n;
double sum,ans; double cal(int i,int j)
{
double xx=(city[i].x-city[j].x)*(city[i].x-city[j].x);
double yy=(city[i].y-city[j].y)*(city[i].y-city[j].y);
return sqrt(xx+yy);
}
void prim()
{
int i,j,v;
double minc;
sum=0;
memset(maxedge,0,sizeof(maxedge));
memset(pre,0,sizeof(pre));
//dis[1]=INF;
for(i=2;i<=n;i++)
{
dis[i]=maps[1][i];
pre[i]=1;
}
vis[1]=1;
for(i=1;i<n;i++)
{
minc=INF;
v=1;
for(j=1;j<=n;j++)
{
if(!vis[j] && dis[j]<minc)
{
minc=dis[j];
v=j;
}
}
sum+=minc;
mark[pre[v]][v]=mark[v][pre[v]]=1;
vis[v]=1;
for(j=1;j<=n;j++)
{
if(vis[j] && j!=v)
{
maxedge[j][v]=maxedge[v][j]=max(dis[v],maxedge[pre[v]][j]);
}
if(!vis[j] && maps[v][j]<dis[j])
{
dis[j]=maps[v][j];
pre[j]=v;
}
}
}
}
int main()
{
int T,i,j;
scanf("%d",&T);
while(T--)
{
memset(mark,0,sizeof(mark));
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
memset(city,0,sizeof(city));
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%lf%lf%lf",&city[i].x,&city[i].y,&city[i].peo);
for(j=1;j<i;j++)
maps[i][j]=maps[j][i]=cal(i,j);
}
prim();
ans=-1;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
if(!mark[i][j])
ans=max(ans,(city[i].peo+city[j].peo)/(sum-maxedge[i][j]));
else
ans=max(ans,(city[i].peo+city[j].peo)/(sum-maps[i][j]));
}
}
printf("%.2lf\n",ans);
}
return 0;
}
感想:maxedge[j][v]=maxedge[v][j]=max(dis[v],maxedge[pre[v]][j]);
这一句开始写成maxedge[j][v]=maxedge[v][j]=max(dis[v],maps[pre[v]][j]);
wa了好多好多次。。。。T_T....
hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)的更多相关文章
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...
- hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...
- hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...
- HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...
随机推荐
- iOS原生App与H5页面交互笔记
文/MikeZhangpy(简书作者)原文链接:http://www.jianshu.com/p/4ed3e5ed99c6著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 最近在做一个项 ...
- Cocos2dx项目移植Android平台
链接地址:http://blog.csdn.net/iuncle/article/details/24772183 版权声明:本文为博主原创文章,未经博主允许不得转载. 1.Classes目录下存放. ...
- ThinkPHP验证码类
//ThinkPHP验证码类使用$config = array( 'fontSize' => 30, // 验证码字体大小 'length' => 3, // 验证码位数 'useNois ...
- Java -- sleep and wait
1.二者的来源 sleep(),是Thread下面的静态方法/静态本地方法. wait(),是Object()的final方法. 2.源码分析 a.sleep() public static void ...
- (Problem 16)Power digit sum
215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of th ...
- 进入MFC讲坛的前言(三)
MFC中的窗口创建及窗口消息映射 我经常碰到有人问我有关窗口创建的问题,他们经常把用HWND描述的系统窗口对象和用CWnd描述的MFC的窗口对象混淆不清.这两者之间是紧密联系在一起的,但是MFC为了自 ...
- LTP介绍
1.LTP介绍 LTP--linut test project ,ltp套件是由Linux Test Project所开发的一套系统測试套件.它基于系统资源的利用率统计开发了一个測试的组合,为系 ...
- linux学习过程中所需要看的一些书籍
入门类 一直认为,在一个系统上学习开发之前,首先需要熟悉这个系统的使用.鉴于天朝的国情,绝大部分人第一个接触的操作系统就是Windows,因此对于这绝大部分人来说,如果要学习Linux开发,学会使用这 ...
- Javascript DOM 02 在<ul>中创建、删除 <li>
创建DOM元素 createElement(标签名) 创建一个节点 appendChild(节点) 追加一个节点 例子:为ul插入li 插入元素 insertBefore(节点, 原有节点) 在 ...
- 一天一个类,一点也不累 之 Set接口
我们的口号是:一天一个类,一点也不累-- 再次回忆一下集合相关的类图. 官方API上这样介绍这个接口: A collection that contains no duplicate elements ...