hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2049 Accepted Submission(s): 746
Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
70.00
题意:秦始皇修路要把所有的城市都连通,每个城市有相应的人口数,每条路有相应的修路费。
现在可以选一条magic路,修路费变为0,以A代表magic 路两端的人口数和。B代表总路费。
选一条路作为magic路,使A/B最大。
分析:不能用贪心,因为A与B相互制约。
要使A/B最大,那么B应该最小。故先求出n个点的最小生成树。再枚举
每一条边,假设最小生成树的值是B, 而枚举的那条边长度是edge[i][j], 如果这一条边已经
是属于最小生成树上的,那么最终式子的值是A/(B-edge[i][j])。如果这一条不属于最小生成
树上的, 那么添加上这条边,就会有n条边,那么就会使得有了一个环,为了使得它还是一
个生成树,就要删掉环上的一条边。 为了让生成树尽量少,那么就要删掉除了加入的那条边
以外,权值最大的那条路径。 假设删除的那个边的权值是Max[i][j], 那么就是A/(B-Max[i][j]).
即:如果把这条边当作magic road的话,那么这条边以及连接u v 的mst的边就组成了一个环了
当前这条边的权值是最大的,要使剩下的路的花费最小,那么肯定要把u v间的最长的一条边给删
去就行了,也就是找环中的第二大边了。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std; struct node
{
double x,y;
double peo;
}city[1010];
int vis[1010],mark[1010][1010],pre[1010];
double maps[1010][1010],dis[1010],maxedge[1010][1010];
int n;
double sum,ans; double cal(int i,int j)
{
double xx=(city[i].x-city[j].x)*(city[i].x-city[j].x);
double yy=(city[i].y-city[j].y)*(city[i].y-city[j].y);
return sqrt(xx+yy);
}
void prim()
{
int i,j,v;
double minc;
sum=0;
memset(maxedge,0,sizeof(maxedge));
memset(pre,0,sizeof(pre));
//dis[1]=INF;
for(i=2;i<=n;i++)
{
dis[i]=maps[1][i];
pre[i]=1;
}
vis[1]=1;
for(i=1;i<n;i++)
{
minc=INF;
v=1;
for(j=1;j<=n;j++)
{
if(!vis[j] && dis[j]<minc)
{
minc=dis[j];
v=j;
}
}
sum+=minc;
mark[pre[v]][v]=mark[v][pre[v]]=1;
vis[v]=1;
for(j=1;j<=n;j++)
{
if(vis[j] && j!=v)
{
maxedge[j][v]=maxedge[v][j]=max(dis[v],maxedge[pre[v]][j]);
}
if(!vis[j] && maps[v][j]<dis[j])
{
dis[j]=maps[v][j];
pre[j]=v;
}
}
}
}
int main()
{
int T,i,j;
scanf("%d",&T);
while(T--)
{
memset(mark,0,sizeof(mark));
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
memset(city,0,sizeof(city));
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%lf%lf%lf",&city[i].x,&city[i].y,&city[i].peo);
for(j=1;j<i;j++)
maps[i][j]=maps[j][i]=cal(i,j);
}
prim();
ans=-1;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
if(!mark[i][j])
ans=max(ans,(city[i].peo+city[j].peo)/(sum-maxedge[i][j]));
else
ans=max(ans,(city[i].peo+city[j].peo)/(sum-maps[i][j]));
}
}
printf("%.2lf\n",ans);
}
return 0;
}
感想:maxedge[j][v]=maxedge[v][j]=max(dis[v],maxedge[pre[v]][j]);
这一句开始写成maxedge[j][v]=maxedge[v][j]=max(dis[v],maps[pre[v]][j]);
wa了好多好多次。。。。T_T....
hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)的更多相关文章
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...
- hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...
- hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...
- HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...
随机推荐
- 使用apache benchmark(ab) 测试报错汇总
1.socket: Too many open files (24) 解决方法: [root@zabbix ~]# ulimit -a core file size (blocks, -c) 0 da ...
- 转:Linus:利用二级指针删除单向链表
感谢网友full_of_bull投递此文(注:此文最初发表在这个这里,我对原文后半段修改了许多,并加入了插图) Linus大婶在slashdot上回答一些编程爱好者的提问,其中一个人问他什么样的代码是 ...
- 基于visual Studio2013解决算法导论之044最短路径
题目 最短路径 解决代码及点评 // 26最短路径dijstra.cpp : 定义控制台应用程序的入口点. // #include <iostream> using namespa ...
- android Bitmap围绕一个点进行旋转
在项目中需要使用定位功能,也就是一个点围绕一个圆心进行旋转,查看了canvas的函数也就只有一个 canvas.drawBitmap(bitmap, matrix, paint)通过使用Matrix来 ...
- Oracle基础(五):多表查询
一.多表查询 (一)简单多表查询 1.多表查询的机制 1)SQL: SELECT * FROM emp; --14条记录 SELECT * FROM dept;--4条记录 SELECT * FROM ...
- POJ1700(过河问题)
#include<iostream> #include<algorithm> using namespace std; ]; int main() { int t,i; cin ...
- PL/SQL连64位Oracle11g R2 win7 64旗舰环境
说明:使用的软件版本是PL/SQL Developer 7.0.1,Oracle服务器端安装在Windows7旗舰版上. 以下是我的步骤 1,先到Oracle网站下载客户端:http://www.or ...
- SpringMVC日期类型转换问题三大处理方法归纳
方法一:实体类中加日期格式化注解 @DateTimeFormat(pattern = "yyyy-MM-dd") private Date receiveAppTime; 方法二: ...
- ARM相关知识
ARM7采用冯·诺依曼(Von-Neumann)结构,数据存储器和程序存储器重合在一起. 同时,此结构也被大多数计算机所采用. ARM7为三级流水线结构(取指,译码,执行),平均功耗为0.6mW ...
- Libgdx环境搭建及介绍
Libgdx简单介绍: libgdx是一个跨平台的2D/3D的游戏开发框架,它由Java/C/C++语言编写而成.ibgdx兼容大多数微机平台(标准JavaSE实现,能执行在Mac.Linux.Win ...