Mahout快速入门教程
Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚类等。Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。
一、Mahout安装、配置
1、下载并解压Mahout
http://archive.apache.org/dist/mahout/
tar -zxvf mahout-distribution-0.9.tar.gz
2、配置环境变量
# set mahout environment
export MAHOUT_HOME=/mnt/jediael/mahout/mahout-distribution-0.9
export MAHOUT_CONF_DIR=$MAHOUT_HOME/conf
export PATH=$MAHOUT_HOME/conf:$MAHOUT_HOME/bin:$PATH
3、安装mahout
[jediael@master mahout-distribution-0.9]$ pwd
/mnt/jediael/mahout/mahout-distribution-0.9
[jediael@master mahout-distribution-0.9]$ mvn install
4、验证Mahout是否安装成功
执行命令mahout。若列出一些算法,则成功:
[jediael@master mahout-distribution-0.9]$ mahout
Running on hadoop, using /mnt/jediael/hadoop-1.2.1/bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /mnt/jediael/mahout/mahout-distribution-0.9/examples/target/mahout-examples-0.9-job.jar
An example program must be given as the first argument.
Valid program names are:
arff.vector: : Generate Vectors from an ARFF file or directory
baumwelch: : Baum-Welch algorithm for unsupervised HMM training
canopy: : Canopy clustering
cat: : Print a file or resource as the logistic regression models would see it
cleansvd: : Cleanup and verification of SVD output
clusterdump: : Dump cluster output to text
clusterpp: : Groups Clustering Output In Clusters
cmdump: : Dump confusion matrix in HTML or text formats
concatmatrices: : Concatenates 2 matrices of same cardinality into a single matrix
cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
fkmeans: : Fuzzy K-means clustering
hmmpredict: : Generate random sequence of observations by given HMM
itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
kmeans: : K-means clustering
lucene.vector: : Generate Vectors from a Lucene index
lucene2seq: : Generate Text SequenceFiles from a Lucene index
matrixdump: : Dump matrix in CSV format
matrixmult: : Take the product of two matrices
parallelALS: : ALS-WR factorization of a rating matrix
qualcluster: : Runs clustering experiments and summarizes results in a CSV
recommendfactorized: : Compute recommendations using the factorization of a rating matrix
recommenditembased: : Compute recommendations using item-based collaborative filtering
regexconverter: : Convert text files on a per line basis based on regular expressions
resplit: : Splits a set of SequenceFiles into a number of equal splits
rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
runlogistic: : Run a logistic regression model against CSV data
seq2encoded: : Encoded Sparse Vector generation from Text sequence files
seq2sparse: : Sparse Vector generation from Text sequence files
seqdirectory: : Generate sequence files (of Text) from a directory
seqdumper: : Generic Sequence File dumper
seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
seqwiki: : Wikipedia xml dump to sequence file
spectralkmeans: : Spectral k-means clustering
split: : Split Input data into test and train sets
splitDataset: : split a rating dataset into training and probe parts
ssvd: : Stochastic SVD
streamingkmeans: : Streaming k-means clustering
svd: : Lanczos Singular Value Decomposition
testnb: : Test the Vector-based Bayes classifier
trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
trainlogistic: : Train a logistic regression using stochastic gradient descent
trainnb: : Train the Vector-based Bayes classifier
transpose: : Take the transpose of a matrix
validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
vectordump: : Dump vectors from a sequence file to text
viterbi: : Viterbi decoding of hidden states from given output states sequence
二、使用简单示例验证mahout
1、启动Hadoop
2、下载测试数据
http://archive.ics.uci.edu/ml/databases/synthetic_control/链接中的synthetic_control.data
或者百度一下也很容易找到这个示例数据。
3、上传测试数据
hadoop fs -put synthetic_control.data testdata
4、 使用Mahout中的kmeans聚类算法,执行命令:
mahout -core org.apache.mahout.clustering.syntheticcontrol.kmeans.Job
花费9分钟左右完成聚类 。
5、查看聚类结果
执行hadoop fs -ls /user/root/output,查看聚类结果。
[jediael@master mahout-distribution-0.9]$ hadoop fs -ls output
Found 15 items
-rw-r--r-- 2 jediael supergroup 194 2015-03-07 15:07 /user/jediael/output/_policy
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusteredPoints
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/clusters-0
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/clusters-1
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusters-10-final
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:03 /user/jediael/output/clusters-2
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:03 /user/jediael/output/clusters-3
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:04 /user/jediael/output/clusters-4
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:04 /user/jediael/output/clusters-5
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:05 /user/jediael/output/clusters-6
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:05 /user/jediael/output/clusters-7
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:06 /user/jediael/output/clusters-8
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusters-9
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/data
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/random-seeds
Mahout快速入门教程的更多相关文章
- Mahout快速入门教程 分类: B10_计算机基础 2015-03-07 16:20 508人阅读 评论(0) 收藏
Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现.分类.聚类等.Mahout最大的优点就是基于hadoop实现,把很多以前运行于单 ...
- 专为设计师而写的GitHub快速入门教程
专为设计师而写的GitHub快速入门教程 来源: 伯乐在线 作者:Kevin Li 原文出处: Kevin Li 在互联网行业工作的想必都多多少少听说过GitHub的大名,除了是最大的开源项目 ...
- EntityFramework6 快速入门教程
EntityFramework6 快速入门教程 不得不说EF在国内实在是太小众,相关的技术文章真实屈指可数,而且很多文章都很旧了,里面使用的版本跟如今的EF6差别还是比较大.我刚开始弄这个的时候真是绕 ...
- Apple Watch开发快速入门教程
Apple Watch开发快速入门教程 试读下载地址:http://pan.baidu.com/s/1eQ8JdR0 介绍:苹果为Watch提供全新的开发框架WatchKit.本教程是国内第一本A ...
- 指示灯组与3个复位按钮的介绍Arduino Yun快速入门教程
指示灯组与3个复位按钮的介绍Arduino Yun快速入门教程 1.4.2 指示灯组 指示灯组的放大图如图1.5所示. 图1.5 指示灯组 各个指示灯对应的功能如下: q RX:对应于0号端口, ...
- 游戏控制杆OUYA游戏开发快速入门教程
游戏控制杆OUYA游戏开发快速入门教程 1.2.2 游戏控制杆 游戏控制杆各个角度的视图,如图1-4所示,它的硬件规格是本文选自OUYA游戏开发快速入门教程大学霸: 图1-4 游戏控制杆各个角度的 ...
- Query 快速入门教程
Query 快速入门教程 http://www.365mini.com/page/jquery-quickstart.htm#what_is_jquery jquery常用方法及使用示例汇总 http ...
- Realm for Android快速入门教程
介绍 如果你关注安卓开发的最新趋势,你可能已经听说过Realm.Realm是一个可以替代SQLite以及ORMlibraries的轻量级数据库. 相比SQLite,Realm更快并且具有很多现代数据库 ...
- CMake快速入门教程-实战
http://www.ibm.com/developerworks/cn/linux/l-cn-cmake/ http://blog.csdn.net/dbzhang800/article/detai ...
随机推荐
- iOS学习之导航条NavigationControl的一些属性设置
/** * 配置公共的属性,该属性作用于所有的导航条界面; */ - (void)configureConmmonPropety { //1.设置导航条的颜色 self.navigationContr ...
- 文件操作IO流
fopen 打开文件或者生成文件 getc 向文件中读取一个字符 putc 向文件中写入一个字符 fgets 向文件中读取字符串 参数可以设置获取多少个字符串 fputs 向文件中写入字符串 不自动添 ...
- soapUI通过groovy脚本设置超时时间
import com.eviware.soapui.SoapUI import com.eviware.soapui.settings.HttpSettings import com.eviware. ...
- mybatia的mypper.xml文件,参数类型为map,map里有一个键值对的值为数组,如何解析,例子可供参考,接上文,发现更简便的方法,不必传数组,只需传字符串用逗号隔开即可
是这样的 先看参数 map.put("orgId", "1818"); map.put("childDeps", "1000,10 ...
- dom4j解析xml字符串
import java.util.Iterator; import java.util.List; import org.dom4j.Document; import org.dom4j.Docume ...
- cf D. Xenia and Hamming
http://codeforces.com/contest/357/problem/D 题意:给你两个数n和m,表示两个字符串的循环次数,然后给出两个字符串,求出其相同位置字符不同的个数. 先求出两个 ...
- cf C. Vasya and Robot
http://codeforces.com/contest/355/problem/C 枚举L和R相交的位置. #include <cstdio> #include <cstring ...
- FJ省队集训最终测试 T2
思路:发现如果一个人一共选了x个点,那么选中某一个点对的概率都是一样的,一个人选x个点的总方案是C(n,x),一个人选中某个点对的总方案是C(n-2,x-2),这样,那么选中某个点对的概率就是 x*( ...
- 使用Qt实现MDI风格的主窗体
文章来源:http://hi.baidu.com/wuyunju/item/3d20164c99a276f6dc0f6c52 QT提供了MDIArea控件可以很方便的实现标准的MDI窗体,但用起来并不 ...
- strcat函数的坑点
我们先看下面这样一段代码: #include <iostream> #include <stdlib.h> using namespace std; int main() { ...