Nearest Common Ancestors

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 18136   Accepted: 9608

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

 
题意:构建一棵树并给你一个询问,求这两个点的最近公共祖先。
题解:此题数据很水,暴力可过,tarjan最佳。
代码如下:
 #include <cstdio>
#include <cstring>
#include <vector>
using namespace std; const int LEN = ; vector<int> vec[LEN];
int uset[LEN];
bool vis[LEN];
bool root[LEN]; void init(int n)
{
for(int i = ; i <= n; i++)
vec[i].clear();
} void makeset(int n)
{
uset[n] = n;
} int findset(int x)
{
return x == uset[x] ? x : uset[x] = findset(uset[x]);
} void unionset(int x, int y) //并查集操作
{
x = findset(x);
y = findset(y);
if (x == y)
return;
uset[y] = x;
} void LCA(int u, int q1, int q2)
{
int v;
makeset(u);
for(int i = ; i < vec[u].size(); i++){
v = vec[u][i];
LCA(v, q1, q2);
unionset(u, v); //后续遍历并合并集合
}
vis[u] = true;
if (u == q1 && vis[q2] == true){ //如果访问到询问点,判断另外一个点是否被访问过,如果访问过则该点为最近公共祖先
printf("%d\n", findset(q2));
return;
}
else if (u == q2 && vis[q1] == true){
printf("%d\n", findset(q1));
return;
} } int main()
{
int T, n, a, b, q1, q2;
scanf("%d", &T);
while(T--){
memset(uset, , sizeof(uset));
memset(vis, , sizeof(vis));
memset(root, , sizeof(root));
scanf("%d", &n);
init(n);
for(int i = ; i < n - ; i++){
scanf("%d %d", &a, &b);
vec[a].push_back(b);
root[b] = true; //标注非根节点
}
scanf("%d %d", &q1, &q2);
for(int i = ; i <= n; i++)
if (root[i] != true){ //从根节点开始遍历
LCA(i, q1, q2);
break;
}
}
return ;
}

【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)的更多相关文章

  1. POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

    LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...

  2. POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题

    A rooted tree is a well-known data structure in computer science and engineering. An example is show ...

  3. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  4. poj 1330 Nearest Common Ancestors 求最近祖先节点

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37386   Accept ...

  5. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  6. POJ 1330 Nearest Common Ancestors (模板题)【LCA】

    <题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

随机推荐

  1. Nginx 配置指令的执行顺序(六)

    前面我们在 (五) 中提到,在一个 location 中使用 content 阶段指令时,通常情况下就是对应的 Nginx 模块注册该 location 中的“内容处理程序”.那么当一个 locati ...

  2. SQL 必备- ORACLE-SQSLSERVER-DB2时间函数及常见函数总结

    SQLSERVER 篇: 一.时间函数 --getdate 获取当前时间 select getdate() --dateadd 原有时间加: 2013-02-17 13:20:16 此时间加12个月 ...

  3. 何謂COB (Chip On Board) ?介紹COB的演進歷史

    COB (Chip On Board)在電子製造業已經是一項成熟的技術了,可是一般的組裝工廠對它的製程並不熟悉,也許是因為它使用到一些 wire bond 的積體電路(IC)封裝技術,所以很多的成品或 ...

  4. 设置edittext的hint位置

    <EditText android:id="@+id/edt_content" android:layout_width="fill_parent" an ...

  5. Unix/Linux环境C编程入门教程(28) 日期时间那些事儿

    记得这个专题第一篇我们写过一个程序运行时间的程序,采用库函数提供的clock()模拟做程序测试.本篇介绍的函数也是和时间相关,但是没有clock的细致,而是提供的系统时间和日期. 1.asctime( ...

  6. Singleton 单例模式 泛型 窗体控制

    MDI子窗体 控制单例 /// <summary> /// 单例提供者 /// </summary> /// <typeparam name="T"& ...

  7. CSS美化页面滚动条

    文章来自:http://www.webhek.com/scrollbar 本文将会告诉你如何用CSS修改/美化浏览器页面上出现的滚动条.改变它们的颜色,调整它们的外形,适配你对页面UI设计.我们首先将 ...

  8. windows Oracle DBases auto backUp

  9. .NET领域驱动设计—初尝(三:穿过迷雾走向光明)

    开篇介绍 在开始这篇富有某种奇妙感觉的文章之旅时我们先短暂的讨论一下关于软件开发方法论的简要: 纵观软件开发方法论,从瀑布模型.螺旋模型.RUP(统一软件开发过程).XP(极限编程).Agile(敏捷 ...

  10. .NET与你若仅仅如初见(一)

    难忘初次见到你,那是一个夏日的午后,可是天空中乌云密布.大雨来临前的一段时间总是非常闷热的,当我朦胧的睡眼看到你之后瞬间就清醒了,感觉空气也凉爽了起来.尽管仅仅一眼但就是被你那清新脱俗沉鱼落雁之美所征 ...