package com.my.hadoop.mapreduce.partition;

import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class ParCount {

public static class ParMap extends Mapper<LongWritable, Text, Text, InfoBean>{
        private Text key = new Text();
        @Override
        public void map(LongWritable key, Text value, Context context) throws java.io.IOException ,InterruptedException {
            String[] fields = value.toString().split("\t");
            String telNo = fields[1];
            long upPayLoad = Long.parseLong(fields[8]);
            long downPayLoad = Long.parseLong(fields[9]);
            InfoBean bean = new InfoBean(telNo, upPayLoad, downPayLoad);
            this.key.set(telNo);
            context.write(this.key, bean);
        }
    }
    
    public static class ParReduce extends Reducer<Text, InfoBean, Text, InfoBean>{
        @Override
        public void reduce(Text key, java.lang.Iterable<InfoBean> value, org.apache.hadoop.mapreduce.Reducer<Text,InfoBean,Text,InfoBean>.Context context) throws java.io.IOException ,InterruptedException {
            long up_sum = 0;
            long down_sum = 0;
            for (InfoBean bean : value) {
                up_sum += bean.getUpPayLoad();
                down_sum += bean.getDownPayLoad();
            }
            InfoBean bean = new InfoBean("", up_sum, down_sum);
            context.write(key, bean);
        }
    }
    
    /**
     * 分区,参数为Map的输出
     * @author yao
     *
     */
    public static class MyPar extends Partitioner<Text, InfoBean>{

private static Map<String, Integer> parFlag = new HashMap<String, Integer>();
        static {
            parFlag.put("135", 1);
            parFlag.put("136", 1);
            parFlag.put("137", 1);
            parFlag.put("138", 1);
            parFlag.put("139", 1);
            parFlag.put("150", 2);
            parFlag.put("159", 2);
            parFlag.put("182", 3);
            parFlag.put("183", 3);
        }
        
        @Override
        public int getPartition(Text key, InfoBean value, int arg2) {
            String telNo = key.toString().substring(0, 3);
            Integer code = parFlag.get(telNo);
            if (code == null) {
                code = 0;
            }
            
            return code;
        }
        
    }
    
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, ParCount.class.getSimpleName());;
        job.setJarByClass(ParCount.class);
        
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        job.setMapperClass(ParMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(InfoBean.class);
        
        job.setPartitionerClass(MyPar.class);                                        //指定自定义的分区类
        job.setNumReduceTasks(4);                   //需要根据分区的数量设置Reducer数量,多了会出现空文件,少了会报错
        
        job.setReducerClass(ParReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(InfoBean.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        System.exit(job.waitForCompletion(true) ? 0 : 1);
        
    }

}

hadoop2.2.0 MapReduce分区的更多相关文章

  1. hadoop2.2.0 MapReduce求和并排序

    javabean必须实现WritableComparable接口,并实现该接口的序列化,反序列话和比较方法 package com.my.hadoop.mapreduce.sort; import j ...

  2. hadoop2.2.0 MapReduce的序列化

    package com.my.hadoop.mapreduce.dataformat; import java.io.DataInput;import java.io.DataOutput;impor ...

  3. 国内最全最详细的hadoop2.2.0集群的MapReduce的最简单配置

    简介 hadoop2的中的MapReduce不再是hadoop1中的结构已经没有了JobTracker,而是分解成ResourceManager和ApplicationMaster.这次大变革被称为M ...

  4. 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

    今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...

  5. Hadoop2.2.0 第一步完成MapReduce wordcount计算文本数量

    1.完成Hadoop2.2.0单机版环境搭建之后需要利用一个例子程序来检验hadoop2 的mapreduce的功能 //启动hdfs和yarn sbin/start-dfs.sh sbin/star ...

  6. 【hadoop2.6.0】用C++ 编写mapreduce

    hadoop通过hadoop streaming 来实现用非Java语言写的mapreduce代码. 对于一个一点Java都不会的我来说,这真是个天大的好消息. 官网上hadoop streaming ...

  7. 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0

    使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...

  8. Hadoop-2.2.0 + Hbase-0.96.2 + Hive-0.13.1(转)

    From:http://www.itnose.net/detail/6065872.html # 需要软件 Hadoop-2.2.0(目前Apache官网最新的Stable版本) Hbase-0.96 ...

  9. hadoop-2.6.0.tar.gz + spark-1.5.2-bin-hadoop2.6.tgz的集群搭建(单节点)

    前言 本人呕心沥血所写,经过好一段时间反复锤炼和整理修改.感谢所参考的博友们!同时,欢迎前来查阅赏脸的博友们收藏和转载,附上本人的链接.http://www.cnblogs.com/zlslch/p/ ...

随机推荐

  1. String,StringBuffer与StringBuilder的差别??

    String 字符串常量StringBuffer 字符串变量(线程安全)StringBuilder 字符串变量(非线程安全) 简要的说, String 类型和 StringBuffer 类型的主要性能 ...

  2. honeywell D6110开发的一个工厂仓库追溯识别

    近日.接触并开发了一个用honeywell D6110 二维扫描PDA的项目,应用也比較简单. 就是货品物料编码.通过中间码相应,然后中间码再依照不同OEM品牌须要生成各种商品条码并带有流水号. 要求 ...

  3. UI开发--响应者链条

    一.触摸事件处理的详细过程 用户点击屏幕后产生的一个触摸事件,经过一些列的传递过程后,会找到最合适的视图控件来处理这个事件 找到最合适的视图控件后,就会调用控件的touches方法来作具体的事件处理 ...

  4. UITableView的编辑(插入、删除、移动)

    先说两个方法beginUpdates和endUpdates,几点注意事项: 一般我们把行.块的插入.删除.移动写在由这两个方法组成的函数块中.如果你不是在这两个函数组成的块中调用插入.删除.移动方法, ...

  5. jdbc02

    分层实现新闻管理系统 1.创建新闻信息实体类,jdbc配置文件以及工具类 public class News { // 新闻信息的实体类 private Integer id; //编号 privat ...

  6. codevs 3693 数三角形

    /* n*m个点中选3个 再排除三点共线 共线分两类 1 在横线或者竖线上 m*C(n,3) n*C(m,3) 2 在对角线上 这个比较麻烦 以为对角线和矩阵是一一对应的 我们转化成求矩阵 并且保证有 ...

  7. 必须声明标量变量 "@列名"

    这个主要是因为变量没有赋上值(见下图)

  8. FineUI初学手册

    女朋友鄙视我原创少... 1.下载 进入官方论坛:http://www.fineui.com/bbs/ 要用到下载源代码和空项目下载 http://fineui.codeplex.com/ http: ...

  9. UFLDL课程学习(二)

    章节地址:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/ 章节名称:逻辑回归 (Logisitic Regressi ...

  10. 用CALayer实现聚光灯效果

    效果图: 代码部分: #import "ViewController.h" @interface ViewController () @property (nonatomic, s ...