给定一个素数集合 S = { p[1],p[2],...,p[k] },大于 1 且素因子都属于 S 的数我们成为丑数(Humble Numbers or Ugly Numbers),记第 n 大的丑数为 h[n]。

算法 1:

  一种最容易想到的方法当然就是从 2 开始一个一个的判断一个数是否为丑数。这种方法的复杂度约为 O( k * h[n]),铁定超时(如果你这样做而没有超时,请跟 tenshi 联系)  

算法 2:

  看来只有一个一个地主动生成丑数了 :

  我最早做这题的时候,用的是一种比较烂的生成方法,复杂度为 O( k * n * log(n) )。

  算法流程如下:

1.初始化最小堆,内置一个元素 1

2.i=0 ,表示求第 i 个丑数(默认 h[0]=1)

3.if i>n then goto 7

4.取出堆中最小的元素 x(如果有多个最小元素,全部取出来), h[i]:= x,i:=i+1

5.把 x*p[1] , x*p[2] ... ,x*p[n] 放入堆中

6.goto 3

7.结束

  这个算法要使用一个最小堆(Heap)的数据结构,。不会超时。

  

算法 3:

  算法2虽然速度还可以,但是算法复杂度还是有点高。这里介绍一下 UsacoGate 提供的标准程序的算法。首先我们知道这样的东西:如果前 m-1 个丑数已经求出来了(包含 0),那么第 m 个数肯定是由前面某个丑数乘 S 里的素数得来的。假设是 h[pindex[i]] 乘 p[i] 而得到 h[m] 的话,把每次乘 p[i] 的 pindex[i] 列出来,肯定是单调的!利用这个,我们可以得到这样的算法:

1.nhum=0 ,表示求第 nhum 个丑数(默认 h[0]=1)

2.令 pindex[i]=0 ,表示一开始无论怎么乘,都是乘 h[0]

3.if (nhum > n ) then goto 7

4.分别求出 h[pindex[i]]*p[i]的值,找出比 h[nhum-1] 大的最小值

5.把这个最小值 h[pindex[minp]]*p[minp] 存入 h[nhum]

6.nhum:=nhum+1;

7.结束

  这个算法复杂度显然为 O( n * k ),已经相当不错了

以上是某个博客的做题心得吧!我把他引用过来仅仅为了介绍丑数的概念

我就以一道例题介绍丑数吧!

description

只有质数2,3,5,7这几个作为因子的数叫做,丑数,比如前20个丑数是(从小到大来说) 1,2,3,4,6,7,8,9,10,12,14,15,16,18,20,21,24,25和27.
							

input

我们给你个n(1<=m<=5842)当输入n为0结束。
							

output

输出第n个丑数。每个数一行。
							

sample_input

1
2
3
4
11

sample_output

1
2
3
4
12


关于丑数的含义在题目中已有解释,有的题目中忽略了“7”这个质因子,其实这都不是最重要的重要的是掌握其处理的方法。
首先,判断一个数是否为丑数的方法如下:
 int find_uglynum(int a)
{
while(a%==)//将这个数中的质因子 2 耗尽
a/=;
while(a%==)
a/=;
while(a%==)
a/=;
while(a/==)
a/=;
if(a==)
return ;
else
return ;
}
但是这种方法过于费时,下面给出该题解题思路:
         首先,第一个丑数为“1”,后面的每一个丑数都是由前一个丑数乘2、3、5或7而来,那么后一个丑数就是前一个乘这四个数得到的最小值,for example:第一个:1,第二个:1*2、1*3、1*5或1*7,显然为2,第三个:2*2,1*3,1*5或1*7,显然是3,第四个:2*2,,2*3,1*5,1*7为4,第五个:3*2,2*3,1*5,1*7……   聪明的你是否看明白了呢?

下面给出本题的代码:
 #include <iostream>
#include <cstdio>
using namespace std;
#define min(a,b) ((a)<(b)?(a):(b))
#define min4(a,b,c,d) min(min(a,b),min(c,d))
int a[];
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout); int n=; int p2,p3,p5,p7;
p2=p3=p5=p7=;
a[]=;
while(n<)//枚举5842个丑数,放在数组a里。
{
a[++n]=min4(*a[p2],*a[p3],*a[p5],*a[p7]);//从现在枚举的4个丑数里,先选择小的放在a里。
if(a[n]==*a[p2])p2++;//如果a[n]==2*a[p2],2*a[p2]可能是吧a[n]枚举出的数,这样p2++,也可能是重复的枚举,这样也是p2++,总之p2++。
if(a[n]==*a[p3])p3++;//同理。
if(a[n]==*a[p5])p5++;//同理。
if(a[n]==*a[p7])p7++;//同理。
}
while(scanf("%d",&n)&&n)
{
printf("%d\n",a[n]);//要谁找谁。
}
return ;
}



Humble Numbers(丑数) 超详解!的更多相关文章

  1. Mysql超详解

    Mysql超详解 一.命令框基本操作及连接Mysql 找到Mysql安装路径,查看版本 同时按快捷键win+R会弹出一个框,在框中输入cmd 点击确定后会出现一个黑框,这是命令框,我们的操作要在这命令 ...

  2. Python3调用C程序(超详解)

    Python3调用C程序(超详解) Python为什么要调用C? 1.要提高代码的运算速度,C比Python快50倍以上 2.对于C语言里很多传统类库,不想用Python重写,想对从内存到文件接口这样 ...

  3. JUC中的AQS底层详细超详解

    摘要:当你使用java实现一个线程同步的对象时,一定会包含一个问题:你该如何保证多个线程访问该对象时,正确地进行阻塞等待,正确地被唤醒? 本文分享自华为云社区<JUC中的AQS底层详细超详解,剖 ...

  4. html5的float属性超详解(display,position, float)(文本流)

    html5的float属性超详解(display,position, float)(文本流) 一.总结 1.文本流: 2.float和绝对定位都不占文本流的位置 3.普通流是默认定位方式,就是依次按照 ...

  5. HTML中DOM核心知识有哪些(带实例超详解)

    HTML中DOM核心知识有哪些(带实例超详解) 一.总结: 1.先取html元素,然后再对他进行操作,取的话可以getElementById等 2.操作的话,可以是innerHtml,value等等 ...

  6. Mybatis案例超详解(上)

    Mybatis案例超详解(上) 前言: 本来是想像之前一样继续跟新Mybatis,但由于种种原因,迟迟没有更新,快开学了,学了一个暑假,博客也更新了不少,我觉得我得缓缓,先整合一些案例练练,等我再成熟 ...

  7. 高斯消元法(Gauss Elimination)【超详解&模板】

    高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...

  8. DES加密 超详解 及 C++编程实现

    参考资料: 1.计算机与软件学院实验报告管理系统资料 2.强烈推荐观看:<信息安全技术>课程微课设计 简介 什么是DES DES全称为Data Encryption Standard,即数 ...

  9. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

随机推荐

  1. java语法:字符串数组的赋值

    字符串数组怎么赋值呢? 首先当然得先定义啦:String infoPack[] : 然后想当然的以为在for循环里,new一个数组, String infoPack[i] = imgurls; 事实证 ...

  2. jsp分页的不同实现方法

    一.代码实现分页 定义四个分页变量 pageNow  表示第几页  该变量是由用户来决定的,因此是变化的 pageCount  表示总共有多少页,该变量是计算出来的,      ---考虑算法 pag ...

  3. SQL Select结果增加自增自段(网转)

    http://www.cnblogs.com/haver/archive/2011/07/14/2106349.html/* 方法一*/ SELECT 序号= (SELECT COUNT(客户编号) ...

  4. 使用MyEclipse开发第一个Web程序

    MyEclipse环境配置 首先,安装一个MyEclipse,然后进行一些相关的环境配置(Window->Preferences): 比如字体.Formatter等. 也可以从Eclipse中导 ...

  5. 属性(Attribute)资源

    前面已经介绍过自定义View组件的开发,自定义View组件与Android系统提供的View组件一样,即可在Java代码中使用,也可在XML界面布局代码中使用. 当在XML布局文件中使用Android ...

  6. 判断js对象的数据类型,有没有一个最完美的方法?

    先来一个例子: var string1=""; var string2=new String(""); alert(typeof string1); // st ...

  7. Linux下修改键盘映射

    一篇关于修改键盘映射比较靠谱的文章,收藏一下! 原文地址:http://www.07net01.com/2016/04/1436249.html --------------------------- ...

  8. animate动画被锁在队列中不动怎么解决

    [示例]: function scroll_to(obj){            $('html,body').animate({scrollTop:obj.position().top},700) ...

  9. 国产数据库-KingbaseES在linux下的安装

    将KingbaseES软件从windows中传至Linux中并解压 [root@localhost ~]# ls anaconda-ks.cfg  install.log.syslog Desktop ...

  10. 将SWF文件用作资源打包

    使用Flash开发网页游戏少不了与各种美术资源打交道.对于静态资源的那就是各种图片,对于会动的资源可以考虑直接做成swf.制作成swf的美术资源又可以分为两种:一种是直接将关键帧罗列在主时间轴上,那么 ...