意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error

输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中最多有两个 那么就非常easy了 遇到字母直接入栈  遇到反括号计算后入栈  然后就得到结果了

#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
const int N = 1000;
int st[N], row[N], col[N], r[N], c[N]; int main()
{
int n, ans, top;
scanf("%d", &n);
char na[3], s[N];
for(int i = 1; i <= n; ++i)
{
scanf("%s", na);
int j = na[0] - 'A';
scanf("%d%d", &row[j], &col[j]);
} while(~scanf("%s", &s))
{
int i;
for(i = 0 ; i < 26; ++i)
c[i] = col[i], r[i] = row[i];
ans = top = 0; for(i = 0; s[i] != '\0'; ++i)
{
if(isalpha(s[i]))
{
int j = s[i] - 'A';
st[++top] = j;
} else if(s[i] == ')')
{
if(r[st[top]] != c[st[top - 1]]) break;
else
{
--top;
c[st[top]] = c[st[top + 1]];
ans += (r[st[top]] * c[st[top]] * r[st[top + 1]]);
}
}
}
if(s[i] == '\0') printf("%d\n", ans);
else printf("error\n");
}
return 0;
}

 Matrix Chain Multiplication 

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary.
However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n (  ),
representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices.
Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output

0
0
0
error
10000

UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)的更多相关文章

  1. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  2. UVA - 442 Matrix Chain Multiplication(栈模拟水题+专治自闭)

    题目: 给出一串表示矩阵相乘的字符串,问这字符串中的矩阵相乘中所有元素相乘的次数. 思路: 遍历字符串遇到字母将其表示的矩阵压入栈中,遇到‘)’就将栈中的两个矩阵弹出来,然后计算这两个矩阵的元素相乘的 ...

  3. UVa 442 Matrix Chain Multiplication(栈的应用)

    题目链接: https://cn.vjudge.net/problem/UVA-442 /* 问题 输入有括号表示优先级的矩阵链乘式子,计算该式进行的乘法次数之和 解题思路 栈的应用,直接忽视左括号, ...

  4. stack UVA 442 Matrix Chain Multiplication

    题目传送门 题意:给出每个矩阵的行列,计算矩阵的表达式,如果错误输出error,否则输出答案 分析:表达式求值,stack 容器的应用:矩阵的表达式求值A 矩阵是a * b,B 矩阵是b * c,则A ...

  5. UVA442 Matrix Chain Multiplication 矩阵运算量计算(栈的简单应用)

    栈的练习,如此水题竟然做了两个小时... 题意:给出矩阵大小和矩阵的运算顺序,判断能否相乘并求运算量. 我的算法很简单:比如(((((DE)F)G)H)I),遇到 (就cnt累计加一,字母入栈,遇到) ...

  6. 例题6-3 Matrix Chain Multiplication ,Uva 442

    这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...

  7. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  8. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  9. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

随机推荐

  1. libevent简单分析

    一看名字就知道是围绕eventloop转的. 那首先肯定是eventloop是个什么?一般都是IO事件,timer事件的管理器. 那首先看如何new出来一个eventloop: 1.因为libeven ...

  2. Delphi 实现无窗口移动(详细使用WM_NCHITTEST和PtInRect API进行测试)

    procedure imgListMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer) ...

  3. Android中ProgressDialog的应用

    下面通过实现点击按钮来显示加载框,2秒后自动消失. 1.首先在layout的xml中添加一个按钮: <Button android:id="@+id/button1" and ...

  4. 14.6.3 Grouping DML Operations with Transactions 组DML操作

    14.6.3 Grouping DML Operations with Transactions 组DML操作 默认情况下,连接到MySQL server 开始是以启动自动提交模式, 会自动提交每条S ...

  5. Android和java平台 DES加密解密互通程序及其不能互通的原因

    网上的demo一搜一大堆,但是,基本上都是一知半解(包括我).为什么呢?我在尝试分别在两个平台加密的时候,竟然发现Android DES 加密和java DES加密的程序不能互通.就是加密的结果不一样 ...

  6. Tokyo Tyrant(TTServer)系列(四)-tcrmgr远程管理与调试

    Tokyo Tyrant(TTServer)系列-tcrmgr(远程管理与调试) tcrmgr是TokyoTyrant的管理工具,对ttserver进行管理与执行命令: 通过输入tcrmgr回车,能够 ...

  7. jasperreport报表生成时编译的错误

    在帮徐老板解决一个jasperreport报表生成时编译的错误: 刚开始时,加上他所给的 jar 包之后,错误显示为: net.sf.jasperreports.engine.JRException: ...

  8. 成功为Android系统配上了GNU开发环境

             单击此处获得本文的最新更新 经过一周的艰苦努力,成功为我的小米2手机适配上了全功能的GNU开发环境,完全兼容GNU/LINUX(Android自带的bionic.linker真心不好 ...

  9. LinkedHashMap相关信息介绍(转)

    Java中的LinkedHashMap此实现与 HashMap 的不同之处在于,后者维护着一个运行于所有条目的双重链接列表.此链接列表定义了迭代顺序,该迭代顺序通常就是将键插入到映射中的顺序(插入顺序 ...

  10. div仿checkbox表单样式美化及功能

    div仿checkbox表单样式美化及功能(checkbox的样式不好看)素材在底部: 效果图: window.css .bj { position: absolute; top: 0; left: ...