1951: [Sdoi2010]古代猪文

链接:Click Here~

题目:

一道非常好的组合数学题。!!。题目非常长。只是就以下几段话实用。

iPig认为仅仅要符合文献,每一种能整除N的k都是有可能的。他打算考虑到全部可能的k。显然当k等于某个定值时,该朝的猪文文字个数为N / k。然而从N个文字中保留下N / k个的情况也是相当多的。iPig估计,假设全部可能的k的全部情况数加起来为P的话。那么他研究古代文字的代价将会是G的P次方。 如今他想知道猪王国研究古代文字的代价是多少。

因为iPig认为这个数字可能是天文数字。所以你仅仅须要告诉他答案除以999911659的余数就能够了。

就是要求出P = C(N,i|N),然后解出G^P % 999911659就是最后的答案。

我们能够非常easy的看出问题是由两部分组成的,求解G^P和P。

我们能够easy的得出G^P用高速幂能够easy的解决,如今的问题是怎样高速的求出P呢?这是一个难题。我们在继续的分解,发现P的组成了没有。对!就是组合公式C(N,i|N)!而我们又能够知道组合公式假设数据较小的时候能够用杨辉三角的暴力公式得到。而假设是大组合数的话就要用到Lucas定理。(AekdyCoin空间给出了这方面的具体说明)而这题的组合数显然是大组合数。

而直接求就算是long
long 也要益处啊!

!怎么办?我们能够想到大组合数的通常处理方法。就是取模。

模?哪来的模?而此时我们又有费马小定理能够知道当P是素数的时候:

G^P % MOD = G ^ (P % (MOD - 1)) % MOD

所以,此时MOD - 1 = 999911658 是一个偶数,如今就不符合Lucas定理了。

所以,此时我们要对这个偶数进行质数分解。999911658 = 2 * 3 * 4679 * 35617 可是,如今问题又来了。你把模给分解了,那怎样求出结果呢?

我们在好好研究一下。你发现了什么没有?对!就是有例如以下的等式关系:

x = a1 % m1

x = a2 % m2

x = a3 % m3

.

.

.

.

对!

就是中国剩余定理!

如今。经过了一步一步的分解最终把问题攻克了。你该懂了吧!

一道神题啊!

/*
算法:模非素数的组合数
题目:就是要求出P = C(N,i|N),然后解出G^P % 999911659
1、对模质因子分解
2、中国剩余定理
1 <= G <= 10^9,1 <= N <= 10^9 */
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std; typedef long long LL;
const int phi = 999911658;
const int MOD = 999911659;
const int MAXN = 200000; struct Prim{
int cnt,prim[MAXN],num[MAXN];
}pz,nz; int n,G;
LL a[MAXN];
LL fact[5][37777]; //分解质因子
void Div(Prim& p,int x){
p.cnt = 0; //初始化
int k = sqrt(x + 0.5);
for(int i = 2;i <= k;++i){
if(0 == x % i){
p.num[++p.cnt] = 0;
p.prim[p.cnt] = i;
while(0 == x % i){
++p.num[p.cnt];
x /= i;
}
}
} if(x > 1){
p.num[++p.cnt] = 1;
p.prim[p.cnt] = x;
}
} //预处理阶乘
void init(){
int i,j;
for(i = 1;i <= pz.cnt;++i){
fact[i][0] = 1;
for(j = 1;j <= pz.prim[i];++j)
fact[i][j] = fact[i][j-1] * j % pz.prim[i];
}
} //高速幂取模
LL powmod(LL a,LL b,const int& mod){
LL res = 1;
a %= mod; while(b > 0){
if(b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
} return res;
} LL Norma_C(int n,int m,int i){
int p = pz.prim[i];
return fact[i][n] * powmod(fact[i][m]*fact[i][n-m]%p,p-2,p) % p;
} //Lucas
LL Lucas(int n,int m,int i){
if(!m) return 1;
int p = pz.prim[i];
if(n%p < m%p) return 0;
LL tmp = Norma_C(n%p,m%p,i);
return tmp * Lucas(n / p,m / p,i) % p;
} //计算C(N,i)
void deal(int sum){
for(int i = 1;i <= pz.cnt;++i){
a[i] = (a[i] + Lucas(n,sum,i)) % pz.prim[i];
}
} //查找 i|N
void dfs(int dep,int sum){
if(dep > nz.cnt){
deal(sum);
return;
} dfs(dep+1,sum); //不要该数
for(int i = 1;i <= nz.num[dep];++i){ //要该数的情况
sum *= nz.prim[dep];
dfs(dep+1,sum);
}
} //扩展欧几里得
void extgcd(LL a,LL b,LL& d,LL& x,LL& y){
if(!b){ d = a; x = 1; y = 0; }
else { extgcd(b,a % b,d,y,x); y -= x * (a / b); }
} //中国剩余定理
LL china(){
LL M = phi,d,y,x = 0;
for(int i = 1;i <= pz.cnt;++i){
LL w = M / pz.prim[i];
extgcd(pz.prim[i],w,d,d,y);
x = (x + y * w * a[i]) % M;
}
x = (x + M) % M;
return x;
} int main()
{
while(~scanf("%d%d",&n,&G)){
memset(a,0,sizeof(a));
G %= MOD;
if(!G){
puts("0");
continue;
} //////////////////////////////// Div(pz,phi); //对模进行质因子分解
Div(nz,n); //对数进行质因子分解
init(); //预处理阶乘
dfs(1,1);
LL ans = china(); //中国剩余定理 ////////////////////////////////// printf("%lld\n",powmod((LL)G,ans,MOD)); //G^P
}
return 0;
}

1951: [Sdoi2010]古文字猪的更多相关文章

  1. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  2. 1951: [Sdoi2010]古代猪文

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2171  Solved: 904[Submit][Status] ...

  3. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  4. bzoj 1951 [Sdoi2010]古代猪文(数论知识)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1951 [思路] 一道优(e)秀(xin)的数论题. 首先我们要求的是(G^sigma{ ...

  5. 【刷题】BZOJ 1951 [Sdoi2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  6. bzoj 1951 [Sdoi2010]古代猪文 ——数学综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...

  7. bzoj 1951: [Sdoi2010]古代猪文

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  8. BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)

    题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...

  9. 【BZOJ】1951[Sdoi2010]古代猪文

    [题意]给定G,N,求: $$ans=G^{\sum_{i|n}\binom{n}{i}}\ \mod\ \ p$$ 1<=N,G<=10^9,p=999911659. [算法]欧拉定理+ ...

随机推荐

  1. Ajax基础知识(二)

    接上一篇  Ajax基础知识(一) 在上一篇博客里,抛弃了VS中新建aspx页面,拖个button写上C#代码的方式.使用ajax的方式,异步向服务器请求数据.我们让服务器只简单的返回一个" ...

  2. 惊人go语言(image网站开发)

    [ 声明:版权全部,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 有过python web开发经验的朋友.相信对它的便利性肯定印象很深刻. 事实上利用go语言对 ...

  3. Android开发之异步具体解释(二)之AsyncTask

    请尊重他人的劳动成果,转载请注明出处:Android开发之异步具体解释(二)之AsyncTask http://blog.csdn.net/fengyuzhengfan/article/details ...

  4. 全网最全ASP.NET MVC 教程汇总

    全网最全ASP.NET MVC 教程汇总 MVC架构已深得人心,微软也不甘落后,推出了Asp.net MVC.小编特意整理博客园乃至整个网络最具价值的MVC技术原创文章,为想要学习ASP.NET MV ...

  5. zoj 3659 并检查集合

    http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=4882 现在在牡丹江,明天regional直播比赛,我会在一个月内退休.求祝福 ...

  6. asp.net学习之GridView事件、GridViewRow对象

    原文:asp.net学习之GridView事件.GridViewRow对象 1. GridView控件的事件 GridView有很多事件,事件可以定制控件的外观或者行为.事件分为三类     1.1 ...

  7. 动态传递参数到DevExpress.XtraReports的小结

    原文:动态传递参数到DevExpress.XtraReports的小结 前两种方法和WinForm一样,可以传递参数.数组.实体对象.DataTable等1. 采用构造函数具体用法:在Report中p ...

  8. Nyoj 修路方案(次小生成树)

    描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路. 现在已经知道哪些城市之间可以修路,如果修路,花费是多少. 现在,军师小工已经找到 ...

  9. 阅读小记3(《C编程专家》)

    gets()不检查缓冲区空间.多余的字符将覆盖原来的栈的内容. fgets()的第二个參数说明最大读入的字符数. 假设这个參数值为n,那么fgets()就会读取最多n-1个字符或读完一个换行符为止.两 ...

  10. 利用缓存、Timer间隔时间发送微信的实例,很有用的例子

    //Class WechatOfferExcutor 此类为微信触发类,属于上层调用类,其中有用到用静态变量缓存offer信息,Task异步执行发送方法等 using Newtonsoft.Json. ...