一、前言

  前面已经分析了Watcher机制中的第一部分,即在org.apache.zookeeper下的相关类,接着来分析org.apache.zookeeper.server下的WatchManager类。

二、WatchManager源码分析

  2.1 类的属性 

public class WatchManager {
// Logger
private static final Logger LOG = LoggerFactory.getLogger(WatchManager.class); // watcher表
private final HashMap<String, HashSet<Watcher>> watchTable =
new HashMap<String, HashSet<Watcher>>(); // watcher到节点路径的映射
private final HashMap<Watcher, HashSet<String>> watch2Paths =
new HashMap<Watcher, HashSet<String>>();
}

  说明:WatcherManager类用于管理watchers和相应的触发器。watchTable表示从节点路径到watcher集合的映射,而watch2Paths则表示从watcher到所有节点路径集合的映射。

  2.2 核心方法分析

  1. size方法 

    public synchronized int size(){
int result = 0;
for(Set<Watcher> watches : watchTable.values()) { // 遍历watchTable所有的值集合(HashSet<Watcher>集合)
// 每个集合大小累加
result += watches.size();
}
// 返回结果
return result;
}

  说明:可以看到size方法是同步的,因此在多线程环境下是安全的,其主要作用是获取watchTable的大小,即遍历watchTable的值集合。

  2. addWatch方法 

    public synchronized void addWatch(String path, Watcher watcher) {
// 根据路径获取对应的所有watcher
HashSet<Watcher> list = watchTable.get(path);
if (list == null) { // 列表为空
// don't waste memory if there are few watches on a node
// rehash when the 4th entry is added, doubling size thereafter
// seems like a good compromise
// 新生成watcher集合
list = new HashSet<Watcher>(4);
// 存入watcher表
watchTable.put(path, list);
}
// 将watcher直接添加至watcher集合
list.add(watcher); // 通过watcher获取对应的所有路径
HashSet<String> paths = watch2Paths.get(watcher);
if (paths == null) { // 路径为空
// cnxns typically have many watches, so use default cap here
// 新生成hash集合
paths = new HashSet<String>();
// 将watcher和对应的paths添加至映射中
watch2Paths.put(watcher, paths);
}
// 将路径添加至paths集合
paths.add(path);
}

  说明:addWatch方法同样是同步的,其大致流程如下

  ① 通过传入的path(节点路径)从watchTable获取相应的watcher集合,进入②

  ② 判断①中的watcher是否为空,若为空,则进入③,否则,进入④

  ③ 新生成watcher集合,并将路径path和此集合添加至watchTable中,进入④

  ④ 将传入的watcher添加至watcher集合,即完成了path和watcher添加至watchTable的步骤,进入⑤

  ⑤ 通过传入的watcher从watch2Paths中获取相应的path集合,进入⑥

  ⑥ 判断path集合是否为空,若为空,则进入⑦,否则,进入⑧

  ⑦ 新生成path集合,并将watcher和paths添加至watch2Paths中,进入⑧

  ⑧ 将传入的path(节点路径)添加至path集合,即完成了path和watcher添加至watch2Paths的步骤。

  3. removeWatcher方法  

    public synchronized void removeWatcher(Watcher watcher) {
// 从wach2Paths中移除watcher,并返回watcher对应的path集合
HashSet<String> paths = watch2Paths.remove(watcher);
if (paths == null) { // 集合为空,直接返回
return;
}
for (String p : paths) { // 遍历路径集合
// 从watcher表中根据路径取出相应的watcher集合
HashSet<Watcher> list = watchTable.get(p);
if (list != null) { // 若集合不为空
// 从list中移除该watcher
list.remove(watcher);
if (list.size() == 0) { // 移除后list为空,则从watch表中移出
watchTable.remove(p);
}
}
}
}

  说明:removeWatcher用作从watch2Paths和watchTable中中移除该watcher,其大致步骤如下

  ① 从watch2Paths中移除传入的watcher,并且返回该watcher对应的路径集合,进入②

  ② 判断返回的路径集合是否为空,若为空,直接返回,否则,进入③

  ③ 遍历②中的路径集合,对每个路径,都从watchTable中取出与该路径对应的watcher集合,进入④

  ④ 若③中的watcher集合不为空,则从该集合中移除watcher,并判断移除元素后的集合大小是否为0,若为0,进入⑤

  ⑤ 从watchTable中移除路径。

  4. triggerWatch方法

    public Set<Watcher> triggerWatch(String path, EventType type, Set<Watcher> supress) {
// 根据事件类型、连接状态、节点路径创建WatchedEvent
WatchedEvent e = new WatchedEvent(type,
KeeperState.SyncConnected, path); // watcher集合
HashSet<Watcher> watchers;
synchronized (this) { // 同步块
// 从watcher表中移除path,并返回其对应的watcher集合
watchers = watchTable.remove(path);
if (watchers == null || watchers.isEmpty()) { // watcher集合为空
if (LOG.isTraceEnabled()) {
ZooTrace.logTraceMessage(LOG,
ZooTrace.EVENT_DELIVERY_TRACE_MASK,
"No watchers for " + path);
}
// 返回
return null;
}
for (Watcher w : watchers) { // 遍历watcher集合
// 根据watcher从watcher表中取出路径集合
HashSet<String> paths = watch2Paths.get(w);
if (paths != null) { // 路径集合不为空
// 则移除路径
paths.remove(path);
}
}
}
for (Watcher w : watchers) { // 遍历watcher集合
if (supress != null && supress.contains(w)) { // supress不为空并且包含watcher,则跳过
continue;
}
// 进行处理
w.process(e);
}
return watchers;
}

  说明:该方法主要用于触发watch事件,并对事件进行处理。其大致步骤如下

  ① 根据事件类型、连接状态、节点路径创建WatchedEvent,进入②

  ② 从watchTable中移除传入的path对应的键值对,并且返回path对应的watcher集合,进入③

  ③ 判断watcher集合是否为空,若为空,则之后会返回null,否则,进入④

  ④ 遍历②中的watcher集合,对每个watcher,从watch2Paths中取出path集合,进入⑤

  ⑤ 判断④中的path集合是否为空,若不为空,则从集合中移除传入的path。进入⑥

  ⑥ 再次遍历watcher集合,对每个watcher,若supress不为空并且包含了该watcher,则跳过,否则,进入⑦

  ⑦ 调用watcher的process方法进行相应处理,之后返回watcher集合。

  5. dumpWatches方法

    public synchronized void dumpWatches(PrintWriter pwriter, boolean byPath) {
if (byPath) { // 控制写入watchTable或watch2Paths
for (Entry<String, HashSet<Watcher>> e : watchTable.entrySet()) { // 遍历每个键值对
// 写入键
pwriter.println(e.getKey());
for (Watcher w : e.getValue()) { // 遍历值(HashSet<Watcher>)
pwriter.print("\t0x");
pwriter.print(Long.toHexString(((ServerCnxn)w).getSessionId()));
pwriter.print("\n");
}
}
} else {
for (Entry<Watcher, HashSet<String>> e : watch2Paths.entrySet()) { // 遍历每个键值对
// 写入"0x"
pwriter.print("0x");
pwriter.println(Long.toHexString(((ServerCnxn)e.getKey()).getSessionId()));
for (String path : e.getValue()) { // 遍历值(HashSet<String>)
//
pwriter.print("\t");
pwriter.println(path);
}
}
}
}

  说明:dumpWatches用作将watchTable或watch2Paths写入磁盘。

三、总结

  WatchManager类用作管理watcher、其对应的路径以及触发器,其方法都是针对两个映射的操作,相对简单,也谢谢各位园友的观看~ 

【Zookeeper】源码分析之Watcher机制(二)的更多相关文章

  1. 【Zookeeper】源码分析之Watcher机制(三)之Zookeeper

    一.前言 前面已经分析了Watcher机制中的大多数类,本篇对于ZKWatchManager的外部类Zookeeper进行分析. 二.Zookeeper源码分析 2.1 类的内部类 Zookeeper ...

  2. 【Zookeeper】源码分析之Watcher机制(二)之WatchManager

    一.前言 前面已经分析了Watcher机制中的第一部分,即在org.apache.zookeeper下的相关类,接着来分析org.apache.zookeeper.server下的WatchManag ...

  3. 【Zookeeper】源码分析之Watcher机制(一)

    一.前言 前面已经分析了Zookeeper持久话相关的类,下面接着分析Zookeeper中的Watcher机制所涉及到的类. 二.总体框图 对于Watcher机制而言,主要涉及的类主要如下. 说明: ...

  4. zookeeper源码分析之六session机制

    zookeeper中session意味着一个物理连接,客户端连接服务器成功之后,会发送一个连接型请求,此时就会有session 产生. session由sessionTracker产生的,sessio ...

  5. zookeeper源码分析之四服务端(单机)处理请求流程

    上文: zookeeper源码分析之一服务端启动过程 中,我们介绍了zookeeper服务器的启动过程,其中单机是ZookeeperServer启动,集群使用QuorumPeer启动,那么这次我们分析 ...

  6. zookeeper源码分析之五服务端(集群leader)处理请求流程

    leader的实现类为LeaderZooKeeperServer,它间接继承自标准ZookeeperServer.它规定了请求到达leader时需要经历的路径: PrepRequestProcesso ...

  7. zookeeper源码分析之三客户端发送请求流程

    znode 可以被监控,包括这个目录节点中存储的数据的修改,子节点目录的变化等,一旦变化可以通知设置监控的客户端,这个功能是zookeeper对于应用最重要的特性,通过这个特性可以实现的功能包括配置的 ...

  8. kernel 3.10内核源码分析--hung task机制

    kernel 3.10内核源码分析--hung task机制 一.相关知识: 长期以来,处于D状态(TASK_UNINTERRUPTIBLE状态)的进程 都是让人比较烦恼的问题,处于D状态的进程不能接 ...

  9. Zookeeper 源码分析-启动

    Zookeeper 源码分析-启动 博客分类: Zookeeper   本文主要介绍了zookeeper启动的过程 运行zkServer.sh start命令可以启动zookeeper.入口的main ...

随机推荐

  1. Java 异常归纳总结

    1.异常的分类 1) Checked exception: 这类异常都是Exception的子类 .异常的向上抛出机制进行处理,如果子类可能产生A异常,那么在父类中也必须throws A异常.可能导致 ...

  2. 自己写RTPserver——大约RTP协议

    自己写RTPserver--大约RTP协议 本文将带领你一步一步地实现一个简单的手RTP变速器server,旨在了解RTP流媒体传输协议以及有关多媒体编解码器的一些知识. RTP协议的必备知识 要动手 ...

  3. 领域模型(Domain Model)

    领域模型(Domain Model) 一:面向对象设计中最简单的部分与最难的部分 如果说事务脚本是 面向过程 的,那么领域模型就是 面向对象 的.面向对象的一个很重要的点就是:“把事情交给最适合的类去 ...

  4. 带你走近AngularJS 之创建自定义指令

    带你走近AngularJS 之创建自定义指令 为什么使用AngularJS 指令? 使用过 AngularJS 的朋友应该最感兴趣的是它的指令.现今市场上的前端框架也只有AngularJS 拥有自定义 ...

  5. PLAN: 入门题目

    一道道刷完它! A07, A11, A12, A14, A15, A18, A22, A24, A25, A26, A27 A29, A32, A34, A59, A66, A69, A84, B24 ...

  6. ASP.NET Web API中的JSON和XML序列化

    ASP.NET Web API中的JSON和XML序列化 前言 阅读本文之前,您也可以到Asp.Net Web API 2 系列导航进行查看 http://www.cnblogs.com/aehyok ...

  7. [转]JavaScriptCore by Example

    原文:http://www.bignerdranch.com/blog/javascriptcore-example/ JavaScriptCore is not a new framework; i ...

  8. Leetcode:Minimus Depth of Binary Tree

    The problem description: Given a binary tree, find its minimum depth. The minimum depth is the numbe ...

  9. IOS学习之路五(代码实现UITableView)

    先展示一下运行结果: 代码实现: 1.先创建一个空项目: 2.创建一个Controller:(TableViewController) 在AppDelegate.h中声明属性: //  AppDele ...

  10. API HOOK库

    API HOOK库 API HOOK有两种做法,一种是SetWindowHookEx,简单易用,但如果做其它的HOOK,如HOOK OpenProcess,就需要修改内存地址了,内存地址可以通过Wri ...