主题链接:

题意:

给一个仅仅含有1。2的序列,如何变换n次使序列成为一个非递减的序列,而且使n最小。

思路:

这道题的数据范围是50000,则肯定承受不了n方的复杂度。所以 仅仅能写O(n)的算法,甚至更小,所以当时想二分,可是不知道怎么写,忽然想到能够枚举每个位置,把每个位置都当做一个分界点。然后求前半部有多少个2。后半段有多少个1,最后和所有是1和2进行比較,这个问题便得到了解决。

题目:

Dining Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7237   Accepted: 3078

Description

The cows are so very silly about their dinner partners. They have organized themselves into two groups (conveniently numbered 1 and 2) that insist upon dining together in order, with group 1 at the beginning of the line and group 2 at the end. The trouble
starts when they line up at the barn to enter the feeding area.

Each cow i carries with her a small card upon which is engraved Di (1 ≤ Di ≤ 2) indicating her dining group membership. The entire set of N (1 ≤ N ≤ 30,000) cows has lined up for dinner but
it's easy for anyone to see that they are not grouped by their dinner-partner cards.

FJ's job is not so difficult. He just walks down the line of cows changing their dinner partner assignment by marking out the old number and writing in a new one. By doing so, he creates groups of cows like 112222 or 111122 where the cows' dining groups
are sorted in ascending order by their dinner cards. Rarely he might change cards so that only one group of cows is left (e.g., 1111 or 222).

FJ is just as lazy as the next fellow. He's curious: what is the absolute minimum number of cards he must change to create a proper grouping of dining partners? He must only change card numbers and must not rearrange the cows standing in line.

Input

* Line 1: A single integer: N

* Lines 2..N+1: Line i+1 describes cow i's dining preference with a single integer: Di

Output

* Line 1: A single integer that is the minimum number of cards Farmer John must change to assign the cows to eating groups as described.

Sample Input

7
2
1
1
1
2
2
1

Sample Output

2

Source



代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn=30000+10; int sum1[maxn],sum2[maxn]; int main()
{
int n,cal1,cal2,tmp,ans;
while(~scanf("%d",&n))
{
cal1=cal2=0;
ans=INF;
memset(sum1,0,sizeof(sum1));
memset(sum2,0,sizeof(sum2));
for(int i=1;i<=n;i++)
{
scanf("%d",&tmp);
if(tmp==1)
sum1[i]=++cal1;
else
sum1[i]=cal1;
if(tmp==2)
sum2[i]=++cal2;
else
sum2[i]=cal2;
}
for(int i=1;i<n;i++)
ans=min(ans,sum2[i]+(sum1[n]-sum1[i]));
ans=min(ans,sum1[n]);
ans=min(ans,sum2[n]);
printf("%d\n",ans);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

poj3671Dining Cows(DP)的更多相关文章

  1. BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )

    dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...

  2. poj 3186 Treats for the Cows(dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  3. POJ3186 Treats for the Cows —— DP

    题目链接:http://poj.org/problem?id=3186 Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K To ...

  4. poj 3671 Dining Cows (Dp)

    /* 一开始并没有想出On的正解 后来发现题解的思路也是十分的巧妙的 还是没能把握住题目的 只有1 2这两个数的条件 dp还带练练啊 ... */ #include<iostream> # ...

  5. POJ 3671 Dining Cows (DP,LIS, 暴力)

    题意:给定 n 个数,让你修改最少的数,使得这是一个不下降序列. 析:和3670一思路,就是一个LIS,也可以直接暴力,因为只有两个数,所以可以枚举在哪分界,左边是1,右边是2,更新答案. 代码如下: ...

  6. BZOJ USACO 银组 水题集锦

    最近刷银组刷得好欢快,好像都是水题,在这里吧他们都记录一下吧(都是水题大家一定是道道都虐的把= =)几道比较神奇的题到时再列出来单独讲一下吧= =(其实我会说是BZOJ蹦了无聊再来写的么 = =) [ ...

  7. HDU 3045 Picnic Cows(斜率优化DP)

    Picnic Cows Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  8. POJ3186:Treats for the Cows(区间DP)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  9. poj 3186 Treats for the Cows(区间dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

随机推荐

  1. NYOJ202 红黑树 【预购】

    红黑树 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描写叙述 什么是红黑树呢?顾名思义,跟枣树类似.红黑树是一种叶子是黑色果子是红色的树. .. 当然,这个是我说的. .. ...

  2. Binder Proxy技术方案

    Binder Proxy技术方案 作者 低端码农 时间 2014.08.23 0x0 看到有多朋友尝试通过hook系统进程system_process的ioctl,以企图截获系统的IPC通讯.这个方法 ...

  3. 【ThinkingInC++】8、说明,浅谈数据类型的大小

    /** * 特征:说明.浅谈数据类型的大小 * 时刻:2014年8一个月10日本11:02:02 * 笔者:cutter_point */ #include<iostream> using ...

  4. poj2752 Seek the Name, Seek the Fame(next数组的运用)

    题目链接:id=2752" style="color:rgb(202,0,0); text-decoration:none; font-family:Arial; font-siz ...

  5. linux上安装Drupal

    linux上安装Drupal 前言:国内用drupal的并不太多,网上资料也很少.要注意的是drupal尽量别使用apt来安装,特别是ubuntu平台的drupal做出了一定的更改,会妨碍后期的学习和 ...

  6. flex4 一些项目使用的技术

    <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="ht ...

  7. [033] 微信公众帐号开发教程第9篇-QQ表情的发送与接收

    我想大家对QQ表情一定不会陌生,一个个小头像极大丰富了聊天的乐趣,使得聊天不再是简单的文字叙述,还能够配上喜.怒.哀.乐等表达人物心情的小图片.本文重点要介绍的内容就是如何在微信公众平台使用QQ表情, ...

  8. NET 项目结构搭建

    NET 项目结构搭建 我们头开始,从简单的单项目解决方案,逐步添加业务逻辑的约束,从应用逻辑和领域逻辑两方面考虑,从简单的单个项目逐步搭建一个多项目的解决方案.主要内容:(1)搭建应用逻辑和领域逻辑都 ...

  9. WPF中的三维空间(1)

    原文:WPF中的三维空间(1) WPF中可以创建三维几何图形,支持3D对象的应用,支持从3D Max等软件将3D文件obj导入设计中,但是目前还不支持将材质同时导入,这样需要在WPF中对3D对象重新设 ...

  10. Android系统开发(2)——GDB调试工具

    调试的过程 我们在eclipse中来看一下一般调试的过程: 1.debug模式编译 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZGF3YW5nYW5iY ...