PIGS
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 16555   Accepted: 7416

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of
pigs. 

All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 

More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across
the unlocked pig-houses. 

An unlimited number of pigs can be placed in every pig-house. 

Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 

The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 

The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 

A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

Source

题目大意

 Mirko养着一些猪 猪关在一些猪圈里面 猪圈是锁着的

他自己没有钥匙(汗)

 仅仅有要来买猪的顾客才有钥匙

 顾客依次来 每一个顾客会用他的钥匙打开一些猪圈 买

走一些猪 然后锁上

 在锁上之前 Mirko有机会又一次分配这几个已打开猪圈

的猪

 如今给出一開始每一个猪圈的猪数 每一个顾客全部的钥匙

和要买走的猪数 问Mirko最多能卖掉几头猪

题解:对于每一个猪圈的第一个购买的人,加入一条源点到这个人的边,权为这个猪圈的猪数,对于后来的且想要购买该猪圈的人。加入一条第一个购买该猪圈的人到该人的边。权为inf,然后加入每一个人到汇点一条边,权值为该人想要购买的猪的头数。至此,构图完毕。

#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 110
#define maxm 1002 int pig[maxm], m, n, sink;
int G[maxn][maxn], queue[maxn];
bool vis[maxn]; int Layer[maxn]; bool countLayer() {
memset(Layer, 0, sizeof(Layer));
int id = 0, front = 0, now, i;
Layer[0] = 1; queue[id++] = 0;
while(front < id) {
now = queue[front++];
for(i = 0; i <= sink; ++i)
if(G[now][i] && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == sink) return true;
else queue[id++] = i;
}
}
return false;
} int Dinic() {
int minCut, pos, maxFlow = 0;
int i, id = 0, u, v, now;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[0] = 1; queue[id++] = 0;
while(id) {
now = queue[id - 1];
if(now == sink) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
if(G[u][v] < minCut) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(queue[id - 1] != pos)
vis[queue[--id]] = 0;
} else {
for(i = 0; i <= sink; ++i) {
if(G[now][i] && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; queue[id++] = i; break;
}
}
if(i > sink) --id;
}
}
}
return maxFlow;
} int main() {
//freopen("stdin.txt", "r", stdin);
int i, keys, num;
while(scanf("%d%d", &m, &n) == 2) {
sink = n + 1;
for(i = 1; i <= m; ++i)
scanf("%d", &pig[i]);
memset(G, 0, sizeof(G));
for(i = 1; i <= n; ++i) {
scanf("%d", &keys);
while(keys--) {
scanf("%d", &num);
if(pig[num] >= 0) {
G[0][i] += pig[num]; // 0 is source
pig[num] = -i; // 这里是标记第num个猪圈联通的第一个人
} else G[-pig[num]][i] = inf;
}
scanf("%d", &G[i][sink]);
}
printf("%d\n", Dinic());
}
return 0;
}

2015.4.20

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; const int maxn = 105;
const int inf = 0x3f3f3f3f;
int G[maxn][maxn], M, N, S, T;
int pigHouse[maxn*10]; int Dinic(int s, int t); void getMap()
{
memset(G, 0, sizeof(G));
S = 0; T = N + 1; int i, j, K, pos;
for (i = 1; i <= M; ++i)
scanf("%d", &pigHouse[i]); for (i = 1; i <= N; ++i) {
scanf("%d", &K);
while (K--) {
scanf("%d", &pos);
if (pigHouse[pos] >= 0) {
G[S][i] += pigHouse[pos];
pigHouse[pos] = -i;
} else {
G[-pigHouse[pos]][i] = inf;
}
}
scanf("%d", &G[i][T]);
}
} void solve()
{
cout << Dinic(S, T) << endl;
} int main()
{
while (cin >> M >> N) {
getMap();
solve();
}
return 0;
} int queue[maxn];
bool vis[maxn]; int Layer[maxn];
bool countLayer(int s, int t) {
memset(Layer, 0, sizeof(Layer));
int id = 0, front = 0, now, i;
Layer[s] = 1; queue[id++] = s;
while(front < id) {
now = queue[front++];
for(i = s; i <= t; ++i)
if(G[now][i] && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == t) return true;
else queue[id++] = i;
}
}
return false;
}
// 源点,汇点,源点编号必须最小,汇点编号必须最大
int Dinic(int s, int t) {
int minCut, pos, maxFlow = 0;
int i, id = 0, u, v, now;
while(countLayer(s, t)) {
memset(vis, 0, sizeof(vis));
vis[s] = true; queue[id++] = s;
while(id) {
now = queue[id - 1];
if(now == t) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
if(G[u][v] < minCut) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(queue[id - 1] != pos)
vis[queue[--id]] = false;
} else {
for(i = s; i <= t; ++i) {
if(G[now][i] && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; queue[id++] = i; break;
}
}
if(i > t) --id;
}
}
}
return maxFlow;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

POJ1149 PIGS 【最大流量】的更多相关文章

  1. POJ1149 PIGS 【最大流 + 构图】

    题目链接:http://poj.org/problem?id=1149 PIGS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  2. POJ1149 PIGS [最大流 建图]

    PIGS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20662   Accepted: 9435 Description ...

  3. POJ1149 PIGS (网络流)

                                                                             PIGS Time Limit: 1000MS   M ...

  4. POJ1149 PIGS

    想了好久啊...(#-.-) 开始想到m*n个点的构图,明显超时,于是考虑压缩节点个数 我们发现每个猪圈最后被有且只有一个人调整,于是想到对于一个人,连接他能调整的每个猪圈的上一个控制人.(不懂可以开 ...

  5. poj1149 PIGS 最大流(神奇的建图)

    一开始不看题解,建图出错了.后来发现是题目理解错了.  if Mirko wants, he can redistribute the remaining pigs across the unlock ...

  6. 题解 POJ1149 Pigs

    先翻译一下吧(题面可以在原OJ上找) Mirko在一个由M个锁着的猪舍组成的养猪场工作,Mirko无法解锁任何猪舍,因为他没有钥匙.客户纷纷来到农场.他们每个人都有一些猪舍的钥匙,并想购买一定数量的猪 ...

  7. POJ1149 PIGS(最大流)

    题意:       有一个人,他有m个猪圈,每个猪圈里面有一定数量的猪,但是每个猪圈的门都是锁着的,他自己没有钥匙,只有顾客有钥匙,一天依次来了n个顾客,(记住是依次来的)他们每个人都有一些钥匙,和他 ...

  8. poj图论解题报告索引

    最短路径: poj1125 - Stockbroker Grapevine(多源最短路径,floyd) poj1502 - MPI Maelstrom(单源最短路径,dijkstra,bellman- ...

  9. [BZOJ1280][POJ1149]Emmy卖猪pigs

    [BZOJ1280][POJ1149]Emmy卖猪pigs 试题描述 Emmy在一个养猪场工作.这个养猪场有 \(M\) 个锁着的猪圈,但Emmy并没有钥匙.顾客会到养猪场来买猪,一个接着一个.每一位 ...

随机推荐

  1. wamp5中的apache不能启动,80端口被占用

    在wamp中apache中的httpd.conf文件中 端口文件设置为8080 #Listen 12.34.56.78:8080Listen 8080

  2. VMware GSX Server 3.2.1 Build 19281免费下载

    VMware GSX Server 3.2.1 Build 19281免费下载 评论2   字号:大中小 订阅 VMware官方下载: For Windows 版系统:http://download3 ...

  3. [Web Chart系列之五] 6. 实战draw2d之ConnectionRouter

    前言 ConnectionRouter 的作用是定义连线的展示样式. 是直线连接还是曲线连接(好像也是基于Bezier曲线) 位于包: draw2d.layout.connection 下. 常见的有 ...

  4. 使用jni技术进行android应用签名信息核查及敏感信息保护

           近期业余时间写了一款应用<摇啊摇>,安智.安卓.360等几个应用商店已经陆续审核通过并上线.从有想法到终于将产品做出来并公布,断断续续花了近二个半月的业余时间,整体来讲还算顺 ...

  5. php学习笔记--error

    不同的错误处理方法: 简单的die()语句 自己定义错误函数和错误触发器 错误报告 主要的错误处理:使用die()函数 if(!file_exists("welcome.txt") ...

  6. hibernate 批量处理数据

    批量处理数据是指处理大量数据的一个单独的事务. 在应用层批处理操作, 主要有以下方式: 通过 Session 通过 HQL 通过 StatelessSession 通过 JDBC API(仅仅要会用这 ...

  7. SQL注入问题

    斌斌 (给我写信) 原创博文(http://blog.csdn.net/binbinxyz),转载请注明出处! 背景:对于ibaits参数引用可以使用#和$两种写法,其中#写法会采用预编译方式,将转义 ...

  8. HDU4144:Bacon's Cipher

    Problem Description Bacon's cipher or the Baconian cipher is a method of steganography (a method of ...

  9. mongodb笔记2

    成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作. 输入help可以看到基本操作命令: show dbs:显示数据库列表 show collections:显示 ...

  10. MVC @Html控件

    传统的Html元素不能和服务端数据进行绑定 HtmlHelper类提供了一系列的方法来生成Html元素 并可以实现与数据绑定在一起 然后生成Html Html.BeginForm(actionName ...