DFA最小化 -- Hopcroft算法 Python实现
wiki 伪代码看上去一直以为怪。发现葡萄牙语和俄罗斯语那里的 if 推断都还缺少一个条件。
国内的资料比較少。这几份学习资料不错。比我稀里糊涂的思路要好,分享下:
http://www.liafa.univ-paris-diderot.fr/~carton/Enseignement/Complexite/
ENS/Redaction/2008-2009/yingjie.xu.pdf
http://www8.cs.umu.se/kurser/TDBC92/VT06/final/1.pdf
http://arxiv.org/pdf/1010.5318.pdf
对于一个确定型自己主动机 D = (Q, Σ, δ, q0, F)。Q 的一系列恒等关系 ρi (i ≥ 0) 被定义为:
ρ0 = {(p, q)|p, q ∈ F} ∪ {(p, q)|p, q ∈ Q − F},
ρi+1 = {(p, q) ∈ ρi|(∀a ∈ Σ)(δ(p, a), δ(q, a)) ∈ ρi}.
ρi有例如以下关系:
ρ0 ⊇ ρ1 ⊇ · · · .
若 ρi = ρi+1 则对于 ρi = ρj (j > i).
存在 0 ≤ k ≤ |Q| 满足 ρk = ρk+1.
对于 ρi ≠ ρi+1,存在下面性质Equation 1:
ρi ≠ ρi+1 ⇔ (∃p, q ∈ Q, a ∈ Σ) (p, q) ∈ ρi and (δ(p, a), δ(q, a)) ∉ ρi
⇔ (∃U ∈ Q/ρi , a ∈ Σ) p, q ∈ U and (δ(p, a), δ(q, a)) ∉ ρi
⇔ (∃U, V ∈ Q/ρi , a ∈ Σ) p, q ∈ U and δ(p, a) ∈ V and δ(q, a) ∉ V
⇔ (∃U, V ∈ Q/ρi , a ∈ Σ) δ(U, a) ∩ V ≠ ∅ and δ(U, a) ∉ V
算法抽象:
1: Q/θ ← {F, Q − F}
2: while (∃U, V ∈ Q/θ, a ∈ Σ) s.t. Equation 1 holds do
3: Q/θ ← (Q/θ − {U}) ∪ {U ∩ δ^-1(V, a), U − U ∩ δ^-1(V, a)}
4: end while
算法细化:
1:W ← {F, Q − F} # 有些版本号上仅仅是 W ← {F }
2: P ← {F, Q − F}
3: while W is not empty do
4: select and remove S from W
5: for all a ∈ Σ do
6: la ← δ^-1(S, a)
7: for all R in P such that R ∩ la ≠ ∅ and R ∉ la do
8: partition R into R1 and R2: R1 ← R ∩ la and R2 ← R − R1
9: replace R in P with R1 and R2
10: if R ∈ W then
11: replace R in W with R1 and R2
12: else
13: if |R1| ≤ |R2| then
14: add R1 to W
15: else
16: add R2 to W
17: end if
18: end if
19: end for
20: end for
21: end while
复杂度:
O(n log n)
另一个优化的代码:
1: P = {F, Q − F}
2: for all a ∈ A do
3: Add((min(F, Q − F), a), S)
4: while S ≠ ∅ do
5: get (C, a) from S (we extract (C, a) according to the
strategy associated with S: FIFO/LIFO/...)
6: for each B ∈ P split by (C, a) do
7: B′, B′′ are the sets resulting from splitting of B w.r.t. (C, a)
8: Replace B in P with both B′ and B′′
9: for all b ∈ A do
10: if (B, b) ∈ S then
11: Replace (B, b) by (B′, b) and (B′′, b) in S
12: else
13: Add((min(B′,B′′), b), S)
找出无用状态:
state_graph1 = {
'total_states': [ 'A', 'B', 'C', 'D', 'E' ],
'initial_states': [ 'A' ],
'termination_states': [ 'D' ],
'state_transition_map': {
'A': { 'a': 'B', 'b': 'C' },
'B': { 'a': 'B', 'b': 'D' },
'C': { 'a': 'B' },
'E': { 'a': 'E', 'b': 'E', },
'D': { 'a': 'B' },
},
'cins': [ 'a', 'b' ],
} def get_unreachable_states( G ):
reachable_states = set( G['initial_states'] )
new_states = set( G['initial_states'] )
total_states = set( G['total_states'] )
cins = G['cins']
state_transition_map = G['state_transition_map'] while True:
temp_set = set()
for state in new_states:
for char in cins:
try:
next_state = state_transition_map[state][char]
temp_set.update( next_state )
except KeyError:
pass new_states = temp_set - reachable_states
reachable_states.update( temp_set )
if new_states == set():
break unreachable_states = total_states - reachable_states
return unreachable_states print get_unreachable_states( state_graph1 )
Hopcroft:
import random
from copy import deepcopy state_graph1 = {
'total_states': [ '1', '2', '3', '4', '5', '6', '7' ],
'initial_states': [ '1' ],
'termination_states': [ '6', '7' ],
'state_transition_map': {
'1': { 'a': '3', 'b': '2' },
'2': { 'a': '4', 'b': '2' },
'3': { 'c': '3', 'b': '6', 'd': '5' },
'4': { 'b': '7', 'd': '5', 'c': '3' },
'5': { 'a': '4' },
'6': { 'b': '6' },
'7': { 'b': '6' },
},
'cins': [ 'a', 'b', 'c', 'd' ],
} state_graph2 = {
'total_states': [ 'A', 'B', 'C', 'D', 'E', 'F', 'S' ],
'initial_states': [ 'A' ],
'termination_states': [ 'C', 'D', 'E', 'F' ],
'state_transition_map': {
'S': { 'a': 'A', 'b': 'B' },
'A': { 'a': 'C', 'b': 'B' },
'B': { 'a': 'A', 'b': 'D' },
'C': { 'a': 'C', 'b': 'E' },
'D': { 'a': 'F', 'b': 'D' },
'E': { 'a': 'F', 'b': 'D' },
'F': { 'a': 'C', 'b': 'E' },
},
'cins': [ 'a', 'b' ],
} state_graph3 = {
'total_states': [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' ],
'initial_states': [ 'A' ],
'termination_states': [ 'C' ],
'state_transition_map': {
'A': { '0': 'B', '1': 'F' },
'B': { '0': 'G', '1': 'C' },
'C': { '0': 'A', '1': 'C' },
'D': { '0': 'C', '1': 'G' },
'E': { '0': 'H', '1': 'F' },
'F': { '0': 'C', '1': 'G' },
'G': { '0': 'G', '1': 'E' },
'H': { '0': 'G', '1': 'C' }
},
'cins': [ '0', '1' ],
} def hopcroft_algorithm( G ):
cins = set( G['cins'] )
termination_states = set( G['termination_states'] )
total_states = set( G['total_states'] )
state_transition_map = G['state_transition_map']
not_termination_states = total_states - termination_states def get_source_set( target_set, char ):
source_set = set()
for state in total_states:
try:
if state_transition_map[state][char] in target_set:
source_set.update( state )
except KeyError:
pass
return source_set P = [ termination_states, not_termination_states ]
W = [ termination_states, not_termination_states ] while W: A = random.choice( W )
W.remove( A ) for char in cins:
X = get_source_set( A, char )
P_temp = [] for Y in P:
S = X & Y
S1 = Y - X if len( S ) and len( S1 ):
P_temp.append( S )
P_temp.append( S1 ) if Y in W:
W.remove( Y )
W.append( S )
W.append( S1 )
else:
if len( S ) <= len( S1 ):
W.append( S )
else:
W.append( S1 )
else:
P_temp.append( Y )
P = deepcopy( P_temp )
return P print hopcroft_algorithm( state_graph1 )
print hopcroft_algorithm( state_graph2 )
print hopcroft_algorithm( state_graph3 )
岛津义弘:
“真田幸村,这片 ‘ 战国 ’ 的土地上有太多的冷漠和争斗。
一个人想要在这种 ‘ 乱世 ’ 中心存温和。他前进的道路定然会非常痛苦,
可是最后能走到 ‘ 武 ’ 之巅峰的人,却往往又都是那样内心温和的人。
由于这份温和可以让人变得非常强壮。
希望你即便面对的是你的敌人,挥舞自己的 ‘ 双枪 ’ 时,也不要失去这份温和。”
版权声明:本文博客原创文章,博客,未经同意,不得转载。
DFA最小化 -- Hopcroft算法 Python实现的更多相关文章
- DFA 最小化
NDFA.εNDFA 确定化的细节这里就不总结了,这里说一说DFA最小化的算法. 关于DFA最小化,
- dfa最小化,修正了上个版本的一些错误。
上个版本测试的时候,只用了两个非常简单的测试用例,所以好多情况有问题却没有测试出来 bug1:在生成diff_matrix的时候,循环变量少循环了一次,导致最后一个节点在如果无法与其他点合并的情况下, ...
- 编译原理中DFA最小化
关于编译原理最小化的操作,专业术语请移步至:http://www.360doc.com/content/18/0601/21/11962419_758841916.shtml 这里只是记录一下个人的理 ...
- 第九次作业——DFA最小化,语法分析初步
老师:MissDu 提交作业 1.将DFA最小化:教材P65 第9题 答: 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 3.自上而下语法分析,回溯产生的原因是 ...
- DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 语言:(01 | 10)*(01 | 10) 自动机图: DFA状态转换矩阵 ...
- 编译原理之DFA最小化,语法分析初步
1.将DFA最小化: 状态转换图: 识别语言:b*ac*(da)*bb* 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 (1)正规式: S -> 0(1S+ ...
- 第九次作业 DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 Ⅰ {1,2,3,4,5} {6,7} {1,2}b={1,2,3,4,5} 3,4}b={5} {6,7} Ⅱ {1,2}{3,4}{5} {6,7} 2.构 ...
- 作业九——DFA最小化
1.将DFA最小化:教材P65 第9题 I {1, 2, 3, 4, 5} {6, 7} {1, 2}b->{1, 2, 3, 4, 5} {3, 4}b->{6, 7} {5}b-> ...
- 编译原理:DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 解析: 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 解析: S→ 0A|1B →S → 0(1S|1)|1(0S|0 ...
随机推荐
- 数论(容斥原理)hdu-4509-The Boss on Mars
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4059 题目大意: 给一个n,求1~n中与n互质的数的4次方的总和. 解题思路: 容斥原理.逆元.公式 ...
- kingso_sort - Taocode
kingso_sort - Taocode 如何编写新sort 由于排序逻辑多种多样,kingso的排序设计成是由一个个排序对象串起的排序链条组成.排序对象之间可以任意组合(只需要改配置文件),就可以 ...
- Event | Beijing Makerspace
Event | Beijing Makerspace CONTACT INFORMATION 4th Floor, Zhongguancun Dream Lab, Beijing, China Pho ...
- wxWidgets刚開始学习的人导引(4)——wxWidgets学习资料及利用方法指导
wxWidgets刚開始学习的人导引全文件夹 PDF版及附件下载 1 前言2 下载.安装wxWidgets3 wxWidgets应用程序初体验4 wxWidgets学习资料及利用方法指导5 用wx ...
- 腾讯QQ:异地登陆也被封号,你们是怎么决策的???
此文我想放到首页,让很多其它的人看到,更期待有人能解释一下.希望管理员给开绿灯. 今天真是费解,我的手机号是青岛的.可是我在武汉工作,因为是3G的卡,全国没有漫游,打电话也没多少钱,所以就没换号. 谁 ...
- arm:启动代码判断是从nand启动还是从norflash启动,拷贝程序到内存的过程
一.nand启动和nor启动:[1] CPU从0x00000000位置开始运行程序. 1.nand启动: 如果将S3C2440配置成从NANDFLASH启动(将开发板的启动开关拔到nand端,此时OM ...
- 【转】windows 7系统安装与配置Tomcat服务器环境
原文链接: windows 7系统安装与配置Tomcat服务器环境 工具/原料 jdk-8u51-windows-x64(我的系统是64位系统,32位的请选x86下载)下载地址:http://www. ...
- MySQL优化必须调整的10项配置
当我们被人雇来监测MySQL性能时,人们希望我们能够检视一下MySQL配置然后给出一些提高建议.许多人在事后都非常惊讶,因为我们建议他们仅仅改动几个设置,即使是这里有好几百个配置项.这篇文章的目的在于 ...
- initialize和init区别
Objective-C很有趣的一个地方是,它非常非常像C.实际上,它就是C语言加上一些其他扩展和一个运行时间(runtime). 有了这个在每个Objective-C程序中都会起作用的附加运行时间,给 ...
- mysql basic operation,mysql总结
mysql> select * from wifi_data where dev_id like "0023-AABBCCCCBBAA" ; 1.显示数据库列表.show d ...