Coursera课程笔记----P4E.Capstone----Week 2&3
Building a Search Engine(week 2&3)
Search Engine Architecture
Web Crawling
Index Building
Searching
Web Crawler
A Web crawler is a computer program that browses the World Wide Web in a methodical, automated manner. Web crawlers are mainly used to create a copy of all the visited pages for later processing by a search engine that will index the downloaded pages to provide fast searches.
steps
- Retrieve a page
- Look through the page for links
- Add the links to a list of "to be retrieved" sites
- repeat...
policy
- selection policy that states which page to download
- re-visit policy that states when to.check for changes to the pages
- politeness policy that states how to avoid overloading Web sites
- parallelization policy that states how to coordinate distributed Web crawlers
robots.txt
A way for a web site to communicate with web crawlers
An informal and voluntary standard
It tells the crawler where to look and where not to look
Search Indexing
Search engine indexing collects, parses, and stores data to facilitate fast and accurate information retrieval. The purpose of storing an index is to optimize speed and performance in finding relevant documents for a search query. Without an index, the search engine would scan every document in the corpus, which would require considerable time and computing power.
code segment
spider.py
import sqlite3
import urllib.error
import ssl
from urllib.parse import urljoin
from urllib.parse import urlparse
from urllib.request import urlopen
from bs4 import BeautifulSoup
# Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
# Link to sqlite
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
# Create new tables
cur.execute('''CREATE TABLE IF NOT EXISTS Pages
(id INTEGER PRIMARY KEY, url TEXT UNIQUE, html TEXT,
error INTEGER, old_rank REAL, new_rank REAL)''')
cur.execute('''CREATE TABLE IF NOT EXISTS Links
(from_id INTEGER, to_id INTEGER)''')
#This table store only one url which is processing
cur.execute('''CREATE TABLE IF NOT EXISTS Webs (url TEXT UNIQUE)''')
# Check to see if we are already in progress...
cur.execute('SELECT id,url FROM Pages WHERE html is NULL and error is NULL ORDER BY RANDOM() LIMIT 1')
row = cur.fetchone()
if row is not None:
print("Restarting existing crawl. Remove spider.sqlite to start a fresh crawl.")
else :
starturl = input('Enter web url or enter: ')
if ( len(starturl) < 1 ) : starturl = 'http://www.dr-chuck.com/'
# delete the "/"
if ( starturl.endswith('/') ) : starturl = starturl[:-1]
web = starturl
if ( starturl.endswith('.htm') or starturl.endswith('.html') ) :
pos = starturl.rfind('/')
web = starturl[:pos]
if ( len(web) > 1 ) :
cur.execute('INSERT OR IGNORE INTO Webs (url) VALUES ( ? )', ( web, ) )
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( starturl, ) )
conn.commit()
# Get the current webs
cur.execute('''SELECT url FROM Webs''')
webs = list()
for row in cur:
webs.append(str(row[0]))
print(webs)
many = 0
while True:
if ( many < 1 ) :
sval = input('How many pages:')
if ( len(sval) < 1 ) : break
many = int(sval)
many = many - 1
cur.execute('SELECT id,url FROM Pages WHERE html is NULL and error is NULL ORDER BY RANDOM() LIMIT 1')
try:
row = cur.fetchone()
# print row
fromid = row[0]
url = row[1]
except:
print('No unretrieved HTML pages found')
many = 0
break
print(fromid, url, end=' ')
# If we are retrieving this page, there should be no links from it
cur.execute('DELETE from Links WHERE from_id=?', (fromid, ) )
try:
document = urlopen(url, context=ctx)
html = document.read()
if document.getcode() != 200 :
print("Error on page: ",document.getcode())
cur.execute('UPDATE Pages SET error=? WHERE url=?', (document.getcode(), url) )
if 'text/html' != document.info().get_content_type() :
print("Ignore non text/html page")
cur.execute('DELETE FROM Pages WHERE url=?', ( url, ) )
conn.commit()
continue
print('('+str(len(html))+')', end=' ')
soup = BeautifulSoup(html, "html.parser")
except KeyboardInterrupt:
print('')
print('Program interrupted by user...')
break
except:
print("Unable to retrieve or parse page")
cur.execute('UPDATE Pages SET error=-1 WHERE url=?', (url, ) )
conn.commit()
continue
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( url, ) )
cur.execute('UPDATE Pages SET html=? WHERE url=?', (memoryview(html), url ) )
conn.commit()
# Retrieve all of the anchor tags
tags = soup('a')
count = 0
for tag in tags:
href = tag.get('href', None)
if ( href is None ) : continue
# Resolve relative references like href="/contact"
up = urlparse(href)
if ( len(up.scheme) < 1 ) :
href = urljoin(url, href)
ipos = href.find('#')
if ( ipos > 1 ) : href = href[:ipos]
if ( href.endswith('.png') or href.endswith('.jpg') or href.endswith('.gif') ) : continue
if ( href.endswith('/') ) : href = href[:-1]
# print href
if ( len(href) < 1 ) : continue
# Check if the URL is in any of the webs
found = False
for web in webs:
if ( href.startswith(web) ) :
found = True
break
if not found : continue
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( href, ) )
count = count + 1
conn.commit()
cur.execute('SELECT id FROM Pages WHERE url=? LIMIT 1', ( href, ))
try:
row = cur.fetchone()
toid = row[0]
except:
print('Could not retrieve id')
continue
# print fromid, toid
cur.execute('INSERT OR IGNORE INTO Links (from_id, to_id) VALUES ( ?, ? )', ( fromid, toid ) )
print(count)
cur.close()
sprank.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
# Find the ids that send out page rank - we only are interested
# in pages in the SCC that have in and out links
cur.execute('''SELECT DISTINCT from_id FROM Links''')
from_ids = list()
for row in cur:
from_ids.append(row[0])
# Find the ids that receive page rank
to_ids = list()
links = list()
cur.execute('''SELECT DISTINCT from_id, to_id FROM Links''')
for row in cur:
from_id = row[0]
to_id = row[1]
if from_id == to_id : continue
if from_id not in from_ids : continue
if to_id not in from_ids : continue
links.append(row)
if to_id not in to_ids : to_ids.append(to_id)
# Get latest page ranks for strongly connected component
prev_ranks = dict()
for node in from_ids:
cur.execute('''SELECT new_rank FROM Pages WHERE id = ?''', (node, ))
row = cur.fetchone()
prev_ranks[node] = row[0]
sval = input('How many iterations:')
many = 1
if ( len(sval) > 0 ) : many = int(sval)
# Sanity check
if len(prev_ranks) < 1 :
print("Nothing to page rank. Check data.")
quit()
# Lets do Page Rank in memory so it is really fast
for i in range(many):
# print prev_ranks.items()[:5]
next_ranks = dict();
total = 0.0
for (node, old_rank) in list(prev_ranks.items()):
total = total + old_rank
next_ranks[node] = 0.0
# print total
# Find the number of outbound links and sent the page rank down each
for (node, old_rank) in list(prev_ranks.items()):
# print node, old_rank
give_ids = list()
for (from_id, to_id) in links:
if from_id != node : continue
# print ' ',from_id,to_id
if to_id not in to_ids: continue
give_ids.append(to_id)
if ( len(give_ids) < 1 ) : continue
amount = old_rank / len(give_ids)
# print node, old_rank,amount, give_ids
for id in give_ids:
next_ranks[id] = next_ranks[id] + amount
newtot = 0
for (node, next_rank) in list(next_ranks.items()):
newtot = newtot + next_rank
evap = (total - newtot) / len(next_ranks)
# print newtot, evap
for node in next_ranks:
next_ranks[node] = next_ranks[node] + evap
newtot = 0
for (node, next_rank) in list(next_ranks.items()):
newtot = newtot + next_rank
# Compute the per-page average change from old rank to new rank
# As indication of convergence of the algorithm
totdiff = 0
for (node, old_rank) in list(prev_ranks.items()):
new_rank = next_ranks[node]
diff = abs(old_rank-new_rank)
totdiff = totdiff + diff
avediff = totdiff / len(prev_ranks)
print(i+1, avediff)
# rotate
prev_ranks = next_ranks
# Put the final ranks back into the database
print(list(next_ranks.items())[:5])
cur.execute('''UPDATE Pages SET old_rank=new_rank''')
for (id, new_rank) in list(next_ranks.items()) :
cur.execute('''UPDATE Pages SET new_rank=? WHERE id=?''', (new_rank, id))
conn.commit()
cur.close()
spdump.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
cur.execute('''SELECT COUNT(from_id) AS inbound, old_rank, new_rank, id, url
FROM Pages JOIN Links ON Pages.id = Links.to_id
WHERE html IS NOT NULL
GROUP BY id ORDER BY inbound DESC''')
count = 0
for row in cur :
if count < 50 : print(row)
count = count + 1
print(count, 'rows.')
cur.close()
spjson.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
print("Creating JSON output on spider.js...")
howmany = int(input("How many nodes? "))
cur.execute('''SELECT COUNT(from_id) AS inbound, old_rank, new_rank, id, url
FROM Pages JOIN Links ON Pages.id = Links.to_id
WHERE html IS NOT NULL AND ERROR IS NULL
GROUP BY id ORDER BY id,inbound''')
fhand = open('spider.js','w')
nodes = list()
maxrank = None
minrank = None
for row in cur :
nodes.append(row)
rank = row[2]
if maxrank is None or maxrank < rank: maxrank = rank
if minrank is None or minrank > rank : minrank = rank
if len(nodes) > howmany : break
if maxrank == minrank or maxrank is None or minrank is None:
print("Error - please run sprank.py to compute page rank")
quit()
fhand.write('spiderJson = {"nodes":[\n')
count = 0
map = dict()
ranks = dict()
for row in nodes :
if count > 0 : fhand.write(',\n')
# print row
rank = row[2]
rank = 19 * ( (rank - minrank) / (maxrank - minrank) )
fhand.write('{'+'"weight":'+str(row[0])+',"rank":'+str(rank)+',')
fhand.write(' "id":'+str(row[3])+', "url":"'+row[4]+'"}')
map[row[3]] = count
ranks[row[3]] = rank
count = count + 1
fhand.write('],\n')
cur.execute('''SELECT DISTINCT from_id, to_id FROM Links''')
fhand.write('"links":[\n')
count = 0
for row in cur :
# print row
if row[0] not in map or row[1] not in map : continue
if count > 0 : fhand.write(',\n')
rank = ranks[row[0]]
srank = 19 * ( (rank - minrank) / (maxrank - minrank) )
fhand.write('{"source":'+str(map[row[0]])+',"target":'+str(map[row[1]])+',"value":3}')
count = count + 1
fhand.write(']};')
fhand.close()
cur.close()
print("Open force.html in a browser to view the visualization")
Coursera课程笔记----P4E.Capstone----Week 2&3的更多相关文章
- Coursera课程笔记----P4E.Capstone----Week 6&7
Visualizing Email Data(Week 6&7) code segment gword.py import sqlite3 import time import zlib im ...
- Coursera课程笔记----P4E.Capstone----Week 4&5
Spidering and Modeling Email Data(week4&5) Mailing List - Gmane Crawl the archive of a mailing l ...
- 操作系统学习笔记----进程/线程模型----Coursera课程笔记
操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...
- Coursera课程笔记----C++程序设计----Week3
类和对象(Week 3) 内联成员函数和重载成员函数 内联成员函数 inline + 成员函数 整个函数题出现在类定义内部 class B{ inline void func1(); //方式1 vo ...
- Coursera课程笔记----Write Professional Emails in English----Week 3
Introduction and Announcement Emails (Week 3) Overview of Introduction & Announcement Emails Bas ...
- Coursera课程笔记----Write Professional Emails in English----Week 1
Get to Know Basic Email Writing Structures(Week 1) Introduction to Course Email and Editing Basics S ...
- Coursera课程笔记----C程序设计进阶----Week 5
指针(二) (Week 5) 字符串与指针 指向数组的指针 int a[10]; int *p; p = a; 指向字符串的指针 指向字符串的指针变量 char a[10]; char *p; p = ...
- Coursera课程笔记----Write Professional Emails in English----Week 5
Culture Matters(Week 5) High/Low Context Communication High Context Communication The Middle East, A ...
- Coursera课程笔记----Write Professional Emails in English----Week 4
Request and Apology Emails(Week 4) How to Write Request Emails Write more POLITELY & SINCERELUY ...
随机推荐
- stand up meeting 11/25/2015 暨sprint2总结
今天在课堂上进行了小组项目的阶段性总结,这两天小组内也是频繁的开会,具体细节我们已经反复核查,具体不表~ sprint2个人工作总结: 冯晓云:完成了必应词典在线查词api的调用和网络状况的检测:完成 ...
- A - Number Sequence 哈希算法(例题)
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M ...
- 微服务统计,分析,图表,监控, 分布式追踪一体化的 HttpReports 在 .Net Core 的应用
前言介绍 HttpReports 是针对.Net Core 开发的轻量级APM系统,基于MIT开源协议, 使用HttpReports可以快速搭建.Net Core环境下统计,分析,图表,监控,分布式追 ...
- layui.laytpl 模板引擎用法
目录 layui下载地址: 最终效果: 模板引擎文档 手册地址: 以下是代码思路: layui下载地址: https://www.layui.com/ 最终效果: 模板引擎文档 手册地址: https ...
- [php代码审计]bluecms v1.6 sp1
一.环境搭建 bluecms v1.6 sp1源码 windows 7 phpstudy2016(php 5.4.45) seay源代码审计系统 源码在网上很容易下载,很多教程说访问地址 http:/ ...
- JavaScript学习笔记(1)字符串方法
字符串方法 length 属性返回字符串的长度 var txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; var sln = txt.length; inde ...
- urlencode()和rawurlencode()区别
urlencode和rawurlencode两个方法在处理字母数字,特殊符号,中文的时候结果都是一样的 ,唯一的不同是对空格的处理, urlencode处理成“+”, rawurlencod ...
- MySQL事务与并发
很多程序员都学过MySQL,而且也会写SQL语句.但仅仅会写还远远不够,在面试中以及在工作中,还必须要会事务和并发. 一.事务 事务是满足 ACID 特性的操作,可以通过 Commit 提交事务, ...
- Spring5参考指南:Bean作用域
文章目录 Bean作用域简介 Singleton作用域 Prototype作用域 Singleton Beans 中依赖 Prototype-bean web 作用域 Request scope Se ...
- 47000名开发者每月产生30000个漏洞 微软是如何用AI排查的
目前微软共有 47000 多名开发人员,每月会产生将近 30000 个漏洞,而这些漏洞会存储在 100 多个 AzureDevOps 和 GitHub 仓库中,以便于在被黑客利用之前快速发现关键的漏洞 ...