Coursera课程笔记----P4E.Capstone----Week 2&3
Building a Search Engine(week 2&3)
Search Engine Architecture
Web Crawling
Index Building
Searching
Web Crawler
A Web crawler is a computer program that browses the World Wide Web in a methodical, automated manner. Web crawlers are mainly used to create a copy of all the visited pages for later processing by a search engine that will index the downloaded pages to provide fast searches.
steps
- Retrieve a page
- Look through the page for links
- Add the links to a list of "to be retrieved" sites
- repeat...
policy
- selection policy that states which page to download
- re-visit policy that states when to.check for changes to the pages
- politeness policy that states how to avoid overloading Web sites
- parallelization policy that states how to coordinate distributed Web crawlers
robots.txt
A way for a web site to communicate with web crawlers
An informal and voluntary standard
It tells the crawler where to look and where not to look
Search Indexing
Search engine indexing collects, parses, and stores data to facilitate fast and accurate information retrieval. The purpose of storing an index is to optimize speed and performance in finding relevant documents for a search query. Without an index, the search engine would scan every document in the corpus, which would require considerable time and computing power.
code segment
spider.py
import sqlite3
import urllib.error
import ssl
from urllib.parse import urljoin
from urllib.parse import urlparse
from urllib.request import urlopen
from bs4 import BeautifulSoup
# Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
# Link to sqlite
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
# Create new tables
cur.execute('''CREATE TABLE IF NOT EXISTS Pages
(id INTEGER PRIMARY KEY, url TEXT UNIQUE, html TEXT,
error INTEGER, old_rank REAL, new_rank REAL)''')
cur.execute('''CREATE TABLE IF NOT EXISTS Links
(from_id INTEGER, to_id INTEGER)''')
#This table store only one url which is processing
cur.execute('''CREATE TABLE IF NOT EXISTS Webs (url TEXT UNIQUE)''')
# Check to see if we are already in progress...
cur.execute('SELECT id,url FROM Pages WHERE html is NULL and error is NULL ORDER BY RANDOM() LIMIT 1')
row = cur.fetchone()
if row is not None:
print("Restarting existing crawl. Remove spider.sqlite to start a fresh crawl.")
else :
starturl = input('Enter web url or enter: ')
if ( len(starturl) < 1 ) : starturl = 'http://www.dr-chuck.com/'
# delete the "/"
if ( starturl.endswith('/') ) : starturl = starturl[:-1]
web = starturl
if ( starturl.endswith('.htm') or starturl.endswith('.html') ) :
pos = starturl.rfind('/')
web = starturl[:pos]
if ( len(web) > 1 ) :
cur.execute('INSERT OR IGNORE INTO Webs (url) VALUES ( ? )', ( web, ) )
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( starturl, ) )
conn.commit()
# Get the current webs
cur.execute('''SELECT url FROM Webs''')
webs = list()
for row in cur:
webs.append(str(row[0]))
print(webs)
many = 0
while True:
if ( many < 1 ) :
sval = input('How many pages:')
if ( len(sval) < 1 ) : break
many = int(sval)
many = many - 1
cur.execute('SELECT id,url FROM Pages WHERE html is NULL and error is NULL ORDER BY RANDOM() LIMIT 1')
try:
row = cur.fetchone()
# print row
fromid = row[0]
url = row[1]
except:
print('No unretrieved HTML pages found')
many = 0
break
print(fromid, url, end=' ')
# If we are retrieving this page, there should be no links from it
cur.execute('DELETE from Links WHERE from_id=?', (fromid, ) )
try:
document = urlopen(url, context=ctx)
html = document.read()
if document.getcode() != 200 :
print("Error on page: ",document.getcode())
cur.execute('UPDATE Pages SET error=? WHERE url=?', (document.getcode(), url) )
if 'text/html' != document.info().get_content_type() :
print("Ignore non text/html page")
cur.execute('DELETE FROM Pages WHERE url=?', ( url, ) )
conn.commit()
continue
print('('+str(len(html))+')', end=' ')
soup = BeautifulSoup(html, "html.parser")
except KeyboardInterrupt:
print('')
print('Program interrupted by user...')
break
except:
print("Unable to retrieve or parse page")
cur.execute('UPDATE Pages SET error=-1 WHERE url=?', (url, ) )
conn.commit()
continue
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( url, ) )
cur.execute('UPDATE Pages SET html=? WHERE url=?', (memoryview(html), url ) )
conn.commit()
# Retrieve all of the anchor tags
tags = soup('a')
count = 0
for tag in tags:
href = tag.get('href', None)
if ( href is None ) : continue
# Resolve relative references like href="/contact"
up = urlparse(href)
if ( len(up.scheme) < 1 ) :
href = urljoin(url, href)
ipos = href.find('#')
if ( ipos > 1 ) : href = href[:ipos]
if ( href.endswith('.png') or href.endswith('.jpg') or href.endswith('.gif') ) : continue
if ( href.endswith('/') ) : href = href[:-1]
# print href
if ( len(href) < 1 ) : continue
# Check if the URL is in any of the webs
found = False
for web in webs:
if ( href.startswith(web) ) :
found = True
break
if not found : continue
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( href, ) )
count = count + 1
conn.commit()
cur.execute('SELECT id FROM Pages WHERE url=? LIMIT 1', ( href, ))
try:
row = cur.fetchone()
toid = row[0]
except:
print('Could not retrieve id')
continue
# print fromid, toid
cur.execute('INSERT OR IGNORE INTO Links (from_id, to_id) VALUES ( ?, ? )', ( fromid, toid ) )
print(count)
cur.close()
sprank.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
# Find the ids that send out page rank - we only are interested
# in pages in the SCC that have in and out links
cur.execute('''SELECT DISTINCT from_id FROM Links''')
from_ids = list()
for row in cur:
from_ids.append(row[0])
# Find the ids that receive page rank
to_ids = list()
links = list()
cur.execute('''SELECT DISTINCT from_id, to_id FROM Links''')
for row in cur:
from_id = row[0]
to_id = row[1]
if from_id == to_id : continue
if from_id not in from_ids : continue
if to_id not in from_ids : continue
links.append(row)
if to_id not in to_ids : to_ids.append(to_id)
# Get latest page ranks for strongly connected component
prev_ranks = dict()
for node in from_ids:
cur.execute('''SELECT new_rank FROM Pages WHERE id = ?''', (node, ))
row = cur.fetchone()
prev_ranks[node] = row[0]
sval = input('How many iterations:')
many = 1
if ( len(sval) > 0 ) : many = int(sval)
# Sanity check
if len(prev_ranks) < 1 :
print("Nothing to page rank. Check data.")
quit()
# Lets do Page Rank in memory so it is really fast
for i in range(many):
# print prev_ranks.items()[:5]
next_ranks = dict();
total = 0.0
for (node, old_rank) in list(prev_ranks.items()):
total = total + old_rank
next_ranks[node] = 0.0
# print total
# Find the number of outbound links and sent the page rank down each
for (node, old_rank) in list(prev_ranks.items()):
# print node, old_rank
give_ids = list()
for (from_id, to_id) in links:
if from_id != node : continue
# print ' ',from_id,to_id
if to_id not in to_ids: continue
give_ids.append(to_id)
if ( len(give_ids) < 1 ) : continue
amount = old_rank / len(give_ids)
# print node, old_rank,amount, give_ids
for id in give_ids:
next_ranks[id] = next_ranks[id] + amount
newtot = 0
for (node, next_rank) in list(next_ranks.items()):
newtot = newtot + next_rank
evap = (total - newtot) / len(next_ranks)
# print newtot, evap
for node in next_ranks:
next_ranks[node] = next_ranks[node] + evap
newtot = 0
for (node, next_rank) in list(next_ranks.items()):
newtot = newtot + next_rank
# Compute the per-page average change from old rank to new rank
# As indication of convergence of the algorithm
totdiff = 0
for (node, old_rank) in list(prev_ranks.items()):
new_rank = next_ranks[node]
diff = abs(old_rank-new_rank)
totdiff = totdiff + diff
avediff = totdiff / len(prev_ranks)
print(i+1, avediff)
# rotate
prev_ranks = next_ranks
# Put the final ranks back into the database
print(list(next_ranks.items())[:5])
cur.execute('''UPDATE Pages SET old_rank=new_rank''')
for (id, new_rank) in list(next_ranks.items()) :
cur.execute('''UPDATE Pages SET new_rank=? WHERE id=?''', (new_rank, id))
conn.commit()
cur.close()
spdump.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
cur.execute('''SELECT COUNT(from_id) AS inbound, old_rank, new_rank, id, url
FROM Pages JOIN Links ON Pages.id = Links.to_id
WHERE html IS NOT NULL
GROUP BY id ORDER BY inbound DESC''')
count = 0
for row in cur :
if count < 50 : print(row)
count = count + 1
print(count, 'rows.')
cur.close()
spjson.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
print("Creating JSON output on spider.js...")
howmany = int(input("How many nodes? "))
cur.execute('''SELECT COUNT(from_id) AS inbound, old_rank, new_rank, id, url
FROM Pages JOIN Links ON Pages.id = Links.to_id
WHERE html IS NOT NULL AND ERROR IS NULL
GROUP BY id ORDER BY id,inbound''')
fhand = open('spider.js','w')
nodes = list()
maxrank = None
minrank = None
for row in cur :
nodes.append(row)
rank = row[2]
if maxrank is None or maxrank < rank: maxrank = rank
if minrank is None or minrank > rank : minrank = rank
if len(nodes) > howmany : break
if maxrank == minrank or maxrank is None or minrank is None:
print("Error - please run sprank.py to compute page rank")
quit()
fhand.write('spiderJson = {"nodes":[\n')
count = 0
map = dict()
ranks = dict()
for row in nodes :
if count > 0 : fhand.write(',\n')
# print row
rank = row[2]
rank = 19 * ( (rank - minrank) / (maxrank - minrank) )
fhand.write('{'+'"weight":'+str(row[0])+',"rank":'+str(rank)+',')
fhand.write(' "id":'+str(row[3])+', "url":"'+row[4]+'"}')
map[row[3]] = count
ranks[row[3]] = rank
count = count + 1
fhand.write('],\n')
cur.execute('''SELECT DISTINCT from_id, to_id FROM Links''')
fhand.write('"links":[\n')
count = 0
for row in cur :
# print row
if row[0] not in map or row[1] not in map : continue
if count > 0 : fhand.write(',\n')
rank = ranks[row[0]]
srank = 19 * ( (rank - minrank) / (maxrank - minrank) )
fhand.write('{"source":'+str(map[row[0]])+',"target":'+str(map[row[1]])+',"value":3}')
count = count + 1
fhand.write(']};')
fhand.close()
cur.close()
print("Open force.html in a browser to view the visualization")
Coursera课程笔记----P4E.Capstone----Week 2&3的更多相关文章
- Coursera课程笔记----P4E.Capstone----Week 6&7
Visualizing Email Data(Week 6&7) code segment gword.py import sqlite3 import time import zlib im ...
- Coursera课程笔记----P4E.Capstone----Week 4&5
Spidering and Modeling Email Data(week4&5) Mailing List - Gmane Crawl the archive of a mailing l ...
- 操作系统学习笔记----进程/线程模型----Coursera课程笔记
操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...
- Coursera课程笔记----C++程序设计----Week3
类和对象(Week 3) 内联成员函数和重载成员函数 内联成员函数 inline + 成员函数 整个函数题出现在类定义内部 class B{ inline void func1(); //方式1 vo ...
- Coursera课程笔记----Write Professional Emails in English----Week 3
Introduction and Announcement Emails (Week 3) Overview of Introduction & Announcement Emails Bas ...
- Coursera课程笔记----Write Professional Emails in English----Week 1
Get to Know Basic Email Writing Structures(Week 1) Introduction to Course Email and Editing Basics S ...
- Coursera课程笔记----C程序设计进阶----Week 5
指针(二) (Week 5) 字符串与指针 指向数组的指针 int a[10]; int *p; p = a; 指向字符串的指针 指向字符串的指针变量 char a[10]; char *p; p = ...
- Coursera课程笔记----Write Professional Emails in English----Week 5
Culture Matters(Week 5) High/Low Context Communication High Context Communication The Middle East, A ...
- Coursera课程笔记----Write Professional Emails in English----Week 4
Request and Apology Emails(Week 4) How to Write Request Emails Write more POLITELY & SINCERELUY ...
随机推荐
- MyEclipse 10安装SVN插件subclipse
1. 下载SVN插件subclipse 下载地址:http://subclipse.tigris.org/servlets/ProjectDocumentList?expandFolder=2240& ...
- Cucumber(2)——目录结构以及基本语法
目录 回顾 HelloWorld 扩展 回顾 在上一节中,我大致的介绍了一下cucumber的特点,以及基于ruby和JavaScript下关于cucumber环境的配置,如果你还没有进行相关的了解或 ...
- [转载]利用分块传输绕过WAF进行SQL注入
原理 客户端给服务器发送数据的时候,如果我们利用协议去制作payload,就可以绕过http协议的waf,实现SQL注入 分块传输编码(Chunked transfer encoding)是HTTP中 ...
- [git] github 推送以及冲突的解决,以及一些命令
推送以及冲突的解决:(我的觉得先看完) (正常情况就是把修改的文件 git add 然后git commit 然后推送就行啦): 下面是一些命令 1.查看分支状态(查看所有:当前检出分支的前面会有星号 ...
- webpack之Loader
我们知道webpack的优点之一就是专注于处理模块化的项目,能做到开箱即用,但同时这也是webpack的缺点,只能用于模块化开发的项目,例如:Vue,React,Angular.Webpack在进行打 ...
- vue结合百度地图Api实现周边配置查询及根据筛选结果显示对应坐标详情
在我们平常写房地产相关项目的时候经常会用到百度地图,因为这一块客户会考虑到房源周围的配套或者地铁线路所以在这类项目中就不可以避免的会用到百度地图,当然这只是其中一种,其他地图工具也可以,因为我这个项目 ...
- TensorFlow的模型保存与加载
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf #tensorboard --logdir=&qu ...
- Linux查看端口或pid使用路径
1. lsof -i:10010 查看10010端口的占用情况 命令返回结果: 2. netstat -lpn | grep 80 查看80端口服务端socket占用状况 3. ll /proc/26 ...
- [Python] bytes 转换成 str
b = b"example" # bytes object s = "example" # str object sb = bytes(s, encoding ...
- ansible的模块使用
转载于 https://www.cnblogs.com/franknihao/p/8631302.html [Ansible 模块] 就如python库一样,ansible的模块也分成了基本模块和 ...