题目描述

为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:

有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!

输入格式

第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。

接下来k行,每行两个正整数x,y表示A[x]的值不能是y。

输出格式

一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。

输入输出样例

输入 #1复制

3 4 5
1 1
1 1
2 2
2 3
4 3
输出 #1复制

90

说明/提示

样例解释

A[1]不能取1

A[2]不能去2、3

A[4]不能取3

所以可能的数列有以下12种

数列 积

2 1 1 1 2

2 1 1 2 4

2 1 2 1 4

2 1 2 2 8

2 1 3 1 6

2 1 3 2 12

3 1 1 1 3

3 1 1 2 6

3 1 2 1 6

3 1 2 2 12

3 1 3 1 9

3 1 3 2 18

30%的数据n<=4,m<=10,k<=10

另有20%的数据k=0

70%的数据n<=1000,m<=1000,k<=1000

100%的数据 n<=10^9,m<=10^9,k<=10^5,1<=y<=n,1<=x<=m

分析

这个题就是把所有数加起来乘方,用一下求和公式就行

因为有限制,所以减去限制的值,乘方上边减去有限制的个数。

最后把他们乘在一起就行。因为数据大,所以用快速幂优化。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll Mod=;
const int maxn=1e5+;
map<pair<ll,ll>,bool> Inf;
map<ll,ll> sum;
ll n,m,k,js,num[maxn];
ll pow(ll a,ll x){
a%=Mod;
ll ans=;
for(;x;x>>=,a=a*a%Mod){
if(x&) ans=ans*a%Mod;
}
return ans%Mod;
} int main(){
scanf("%lld%lld%lld",&n,&m,&k);
while(k--){
ll x,y;
scanf("%lld%lld",&x,&y);
if(!sum[x]) num[++js]=x;
if(Inf[make_pair(x,y)]) continue;
Inf[make_pair(x,y)]=;
sum[x]+=y;
}
ll ans=,Max=(n+)*n/;
for(ll i=;i<=js;i++){
ans*=(Max-sum[num[i]])%Mod;
ans%=Mod;
}
printf("%lld",ans%Mod*pow(Max,m-js)%Mod%Mod);
return ;
}

P2220 [HAOI2012]容易题【快速幂】的更多相关文章

  1. P2220 [HAOI2012]容易题(快速幂)

    Describe 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值 ...

  2. 洛谷 P2220 [HAOI2012]容易题 数论

    洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...

  3. [LOJ#162]模板题-快速幂2

    <题目链接> 注意:这可能也是一道模板题. 注意2:$p=998224352$ 注意3:对于$100\%$的数据,$n\leq 5 \times 10^6$ 这个题很启发思路,如果直接快速 ...

  4. P2220 [HAOI2012]容易题

    传送门 首先 $(\sum_{i=1}^{n}a_i)(\sum_{i=1}^{m}b_i)$ 展开以后包含了所有 $ab$ 两两相乘的情况并且每种组合只出现一次 发现展开后刚好和题目对序列价值的定义 ...

  5. P2220 [HAOI2012]容易题[小学数学]

    题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定 ...

  6. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  7. 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂

    [bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...

  8. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

  9. 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】

    目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...

随机推荐

  1. Java实现 LeetCode 698 划分为k个相等的子集(递归)

    698. 划分为k个相等的子集 给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等. 示例 1: 输入: nums = [4, 3, 2, 3, ...

  2. Java实现 LeetCode 561 数组拆分 I(通过排序算法改写PS:难搞)

    561. 数组拆分 I 给定长度为 2n 的数组, 你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), -, (an, bn) ,使得从1 到 n 的 min(ai, bi ...

  3. Java实现 蓝桥杯 猜算式

    猜算式 看下面的算式: □□ x □□ = □□ x □□□ 它表示:两个两位数相乘等于一个两位数乘以一个三位数. 如果没有限定条件,这样的例子很多. 但目前的限定是:这9个方块,表示1~9的9个数字 ...

  4. Java实现 洛谷 P1598 垂直柱状图

    题目描述 写一个程序从输入文件中去读取四行大写字母(全都是大写的,每行不超过100个字符),然后用柱状图输出每个字符在输入文件中出现的次数.严格地按照输出样例来安排你的输出格式. 输入格式 四行字符, ...

  5. java实现SPFA算法

    1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个顶点,称为起点,求取起点到其它所有顶点之间的最短距离,其 ...

  6. Java实现第九届蓝桥杯三体攻击

    三体攻击 [题目描述] 三体人将对地球发起攻击.为了抵御攻击,地球人派出了 A × B × C 艘战舰,在太空中排成一个 A 层 B 行 C 列的立方体.其中,第 i 层第 j 行第 k 列的战舰(记 ...

  7. C++拷贝构造函数被调用的时机

    拷贝构造函数调用的几种情况: 当用类的一个对象去初始化该类的另一个对象(或引用)时系统自动调用拷贝构造函数实现拷贝赋值. 若函数的形参为类对象,调用函数时,实参赋值给形参,系统自动调用拷贝构造函数.( ...

  8. Python模拟用户登录场景

    简单模拟登录场景,将已知的用户名及密码固化,通过用户输入内容和已固化的内容比较进行判断用户名和密码是否输入正确. 在用户输入时,将密码隐藏需要导入模块getpass import getpass _u ...

  9. Debian安装无线网卡Ralink RL5390驱动

    惠普一体机用的无线网卡是Ralink的 RL5390,安装Debian10以后没有驱动,网上下载firmware-misc-nonfree_20190114-2_all.deb 和firmware-r ...

  10. [xDebug] 服务器端的配置参数

    [Xdebug] ;load xdebug extensionzend_extension_ts = path/tp/xdebug;是否开启自动跟踪xdebug.auto_trace = On;是否开 ...