LeetCode Day 5
- 给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
- 示例 1:
- 输入: "babad"
- 输出: "bab"
- 注意: "aba" 也是一个有效答案,但我们只输出第一个满足条件的字符串。
思路
- 中心扩展法:这段说明来自LeetCode官网,事实上,只需使用恒定的空间,我们就可以在 O(n^2)的时间内解决这个问题。我们观察到回文中心的两侧互为镜像。因此,回文可以从它的中心展开,并且只有2n−1个这样的中心。你可能会问,为什么会是2n - 1个,而不是n个中心?原因在于所含字母数为偶数的回文的中心可以处于两字母之间(例如“abba” 的中心在两个‘b’ 之间)。
- 按照官方的写法,我们需要以某个字符为中心,假定它是奇数回文串的中心,扩展一次,然后假定它是偶数回文串的中心,扩展一次。比较奇数串和偶数串两个回文串长度,最后确认回文串最大长度。这里我们提前借用一下马拉车算法的想法,改进一下官方给的中心扩展法。我们对输入的字符串,每两个中间插入一个特殊字符,譬如"#",将形如"abcba"的奇数串变成"#a#b#c#b#a#",将偶数串"abba"变成"#a#b#b#a#",这样他们就都是奇数串了,我们只按照奇数串的中心进行扩展来算即可,得到最大子串后,长度除以2,将子串替换掉特殊字符就得到最大子串了。
/**
* @param {string} s
* @return {string}
*/
var longestPalindrome = function (s) {
if (s.length === 0) return '';
let sp = '#';
let str = sp + s.split('').join(sp) + sp;
let maxRadius = -1;
let maxCenter = -1;
for (let i = 0, lens = str.length; i < lens; i++) {
let radius = expandAroundCenter(str, i);
if (radius > maxRadius) {
maxRadius = radius;
maxCenter = i;
}
}
return s.slice(maxCenter / 2 - maxRadius / 2 + 1, maxCenter / 2 + maxRadius / 2);
};
function expandAroundCenter(s, center) {
let radius = 1;
let lens = s.length;
let left, right;
do {
left = center - radius;
right = center + radius;
if (left < 0 || right > lens - 1) break;
if (s[left] === s[right]) {
radius++;
} else {
break;
}
} while (true);
return radius;
}
- 由于我们将长度为n的字符串扩展成长度为2n+1的字符串了,所以最差的情况下,我们比较的次数并不比官网的写法比较2轮(一次将该字符当成奇数回文串中心,一次当成偶数回文串中心)n个字符共计2n次快多少,我们能不能进一步优化,使时间减少一半,变成n呢?
- 改进:很容易想到,如果有最大的回文字符串,从最中心开始往外扩展,肯定能先找到最大的串,因此可以从扩展后的字符串中心字符开始往两端查找最大回文串,当找到第i个时,如果剩下的字符串不够最大半径时,也就是不可能比当前已经得到的最大字符串大了,就直接退出。代码如下:
/**
* @param {string} s
* @return {string}
*/
var longestPalindrome = function (s) {
if (s.length === 0) return '';
let sp = '#';
let str = sp + s.split('').join(sp) + sp;
let maxRadius = -1;
let maxCenter = -1;
let lens = str.length;
let middle = Math.floor(lens / 2);
for (let i = middle; i < lens; i++) {
if (lens - i < maxRadius) break;
let radius = expandAroundCenter(str, i);
if (radius > maxRadius) {
maxRadius = radius;
maxCenter = i;
}
}
for (let i = middle; i > -1; i--) {
if (i < maxRadius - 1) break;
let radius = expandAroundCenter(str, i);
if (radius > maxRadius) {
maxRadius = radius;
maxCenter = i;
}
}
return s.slice(maxCenter / 2 - maxRadius / 2 + 1, maxCenter / 2 + maxRadius / 2);
};
function expandAroundCenter(s, center) {
let radius = 1;
let lens = s.length;
let left, right;
do {
left = center - radius;
right = center + radius;
if (left < 0 || right > lens - 1) break;
if (s[left] === s[right]) {
radius++;
} else {
break;
}
} while (true);
return radius;
}
- 可以看到时间已经减少为普通方式的一半了。
Manacher(马拉车)算法:马拉车算法 Manacher's Algorithm 是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性O(n)。
核心思想如下:
先通过插入字符法将长度为n的字符串变成长度2n+1的字符串;
用一个数组Radius[2n+1]记录下以每个字符i为中心的最长半径;
对于已经计算过的最长子串,记录下它的对称中心Center,以及它的最右边界RBorder = Center + Radius[Center];
对于当前判断到的字符i,以它为中心的最大子串可能会有以下情况:
假如这个字符在最右边界里,也就是i<=RBorder,那么它关于对称中心Center一定存在一个对称点i_symmetric,使得Raidus[i] = Radius[i_sysmmetric],又因为Center - i_symmetric = i - Center,也就是i_symmetric = 2*Center - i;
考虑此时以i为中心点的最大子串,其最右边界可能会大于我们现有的RBorder,如下图的i2;也有可能比现有的RBorder小,如下图的i1;对i1来说比较简单,它的Radius[i] = Radius[i_sysmmetric]即可;但对于i2来说,它就需要重新计算,但它至少可以从RBorder - i为半径开始重新计算。
# | a | # | b | # | c | # | b | # | a | # | b | # | c | # | b | # | a | # |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
↑ | ↑ | ↑ | ↑ | |||||||||||||||
Center | | | | | RBorder | |||||||||||||||
i1 | i2 |
- 假如这个字符的最右边界超过最大子串的最右边界了,也就是i + radius[i]>RBorder了,就重新更新边界和Center,因为不超过原RBorder里的字符都处理完了。
/**
* @param {string} s
* @return {string}
*/
var longestPalindrome = function (s) {
//扩展字符串
if (s.length === 0) return '';
let sp = '#';
let str = sp + s.split('').join(sp) + sp;
let center = -1;
let radius = [];
let rBorder = -1;
//这俩变量只是为了输出第一个最大子串,因为越往后走,center和rborder就往后走了
let maxCenter = -1, maxRadius = -1;
for (let i = 0, lens = str.length; i < lens; i++) {
radius[i] = rBorder > i ? Math.min(radius[2 * center - i], rBorder - i) : 1;
while (str[i + radius[i]] && str[i - radius[i]] && str[i + radius[i]] === str[i - radius[i]]) {
radius[i]++;
}
if (i + radius[i] > rBorder) {
center = i;
rBorder = i + radius[i];
}
//仅仅只是为了记录第一个最长子串,不是核心算法
if (radius[i] > maxRadius) {
maxCenter = i;
maxRadius = radius[i];
}
}
return s.slice(maxCenter / 2 - maxRadius / 2 + 1, maxCenter / 2 + maxRadius / 2);
}
LeetCode Day 5的更多相关文章
- 我为什么要写LeetCode的博客?
# 增强学习成果 有一个研究成果,在学习中传授他人知识和讨论是最高效的做法,而看书则是最低效的做法(具体研究成果没找到地址).我写LeetCode博客主要目的是增强学习成果.当然,我也想出名,然而不知 ...
- LeetCode All in One 题目讲解汇总(持续更新中...)
终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...
- [LeetCode] Longest Substring with At Least K Repeating Characters 至少有K个重复字符的最长子字符串
Find the length of the longest substring T of a given string (consists of lowercase letters only) su ...
- Leetcode 笔记 113 - Path Sum II
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
- Leetcode 笔记 112 - Path Sum
题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...
- Leetcode 笔记 110 - Balanced Binary Tree
题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...
- Leetcode 笔记 100 - Same Tree
题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode 笔记 101 - Symmetric Tree
题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...
随机推荐
- Vue.js——4.指令 笔记
v-cloak:解决网速延迟 闪烁问题v-text=msg: 和{{}}表达式一样,没有闪烁问题,但是前后不能加别的,覆盖原本的内容 innerTextv-html=msg:innerHtml,一样可 ...
- Bug(1)
程序要求:内网之间客户端截屏(.bmp)并传送给服务端. server: #include <winsock2.h> // 为了使用Winsock API函数 #include <s ...
- POP3、SMTP和IMAP基础概念
POP3 POP3是Post Office Protocol 3的简称,即邮局协议的第3个版本,它规定怎样将个人计算机连接到Internet的邮件服务器和下载电子邮件的电子协议.它是因特网电子邮件的第 ...
- Java之线程通信的应用:经典例题:生产者/消费者问题
/** * 线程通信的应用:经典例题:生产者/消费者问题 * * 生产者(Productor)将产品交给店员(Clerk),而消费者(Customer)从店员处取走产品, * 店员一次只能持有固定数量 ...
- ZJNU 1699 - Bits
可得应当优先寻找最大的2^n-1这个数 如果l的位数不等于r的位数,那么这个数 2^n-1 就是最优解(每一位全为1) 如果l和r的位数相同,先看r是否符合 2^n-1,符合直接返回,不符合的话拆除最 ...
- ZJNU 1531 - 丢手绢--中级
可以将相同的人数分块存在数组gp中先 例如RRGGGRBBBBRR 则gp[1~5]={2,3,1,4,2} 首先可以知道,如果要让没有相邻的相同,只需要每个gp[i]/2向下取整即可得出最少需要改变 ...
- 洛谷 P5017 摆渡车
题目传送门 解题思路: 个人感觉DP这东西,只可意会,不可言传 AC代码: #include<iostream> #include<cstdio> #include<cs ...
- vi——终端中的编辑器
vi--终端中的编辑器 目标 vi 简介 打开和新建文件 三种工作模式 常用命令 分屏命令 常用命令速查图 01. vi 简介 1.1 学习 vi 的目的 在工作中,要对 服务器 上的文件进行 简单 ...
- Java的各类型数据在内存中分配情况详解
1. 有这样一种说法,如今争锋于IT战场的两大势力,MS一族偏重于底层实现,Java一族偏重于系统架构.说法根据无从考证,但从两大势力各自的社区力量和图书市场已有佳作不难看出,此说法不虚,但 ...
- 01 - CentOS 中安装Python 2.7.16
准备 下载链接:https://www.python.org/ftp/python/ 下载源码:wget https://www.python.org/ftp/python/2.7.16/Python ...