随机抽样一致性(RANSAC)算法能够有效的剔除特征匹配中的错误匹配点。

实际上,RANSAC能够有效拟合存在噪声模型下的拟合函数。实际上,RANSAC算法的核心在于将点划分为“内点”和“外点”。在一组包含“外点”的数据集中,采用不断迭代的方法,寻找最优参数模型,不符合最优模型的点,被定义为“外点”。这就是RANSAC的核心思想。

RANSAC原理

OpenCV中滤除误匹配对采用RANSAC算法寻找一个最佳单应性矩阵H,矩阵大小为3×3。RANSAC目的是找到最优的参数矩阵使得满足该矩阵的数据点个数最多,通常令h33=1来归一化矩阵。由于单应性矩阵有8个未知参数,至少需要8个线性方程求解,对应到点位置信息上,一组点对可以列出两个方程,则至少包含4组匹配点对

RANSAC算法从匹配数据集中随机抽出4个样本并保证这4个样本之间不共线,计算出单应性矩阵,然后利用这个模型测试所有数据,并计算满足这个模型数据点的个数与投影误差(即代价函数),若此模型为最优模型,则对应的代价函数最小。

损失函数:

也就是通过随机抽样求解得到一个矩阵,然后验证其他的点是否符合模型,然后符合的点成为“内点”,不符合的点成为“外点”。下次依然从“新的内点集合”中抽取点构造新的矩阵,重新计算误差。最后误差最小,点数最多就是最终的模型。

RANSAC算法步骤:

RANSAC算法步骤:

1. 随机从数据集中随机抽出4个样本数据 (此4个样本之间不能共线),计算出变换矩阵H,记为模型M;

2. 计算数据集中所有数据与模型M的投影误差,若误差小于阈值,加入内点集 I ;

3. 如果当前内点集 I 元素个数大于最优内点集 I_best , 则更新 I_best = I,同时更新迭代次数k ;

4. 如果迭代次数大于k,则退出 ; 否则迭代次数加1,并重复上述步骤;

注:迭代次数k在不大于最大迭代次数的情况下,是在不断更新而不是固定的;

其中,p为置信度,一般取0.995;w为"内点"的比例 ; m为计算模型所需要的最少样本数=4;
关于RANSAC算法的思想,可以用下图表示

也就是RANSAC算法的本质是:在存在噪声的数据中,我们求解一个模型,使得非噪声数据可以用该模型表示,而噪声数据被排除在外。

分享三个讲解RANSAC算法的网址:

https://www.csdn.net/gather_2d/MtjaMg3sNDAwNS1ibG9n.html

https://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html

https://blog.csdn.net/yanghan742915081/article/details/83005442

随机抽样一致性(RANSAC)算法详解的更多相关文章

  1. RANSAC算法详解

    给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上.初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可.实际操作 ...

  2. 一致性hash算法详解

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179     一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...

  3. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  4. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  5. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  6. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  7. 【转】AC算法详解

    原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...

  8. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  9. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

  10. Tarjan算法详解

    Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...

随机推荐

  1. SSH启动Tomcat:The requested resource is not available

    原因:请求的资源不可用. 解决方法: (1)单词拼写错误,可能出现在 ——路径名称 ——配置文件名称 ——包名 ——类名 ——文件内的单词 (2)项目里文件的位置错误 (3)SSH相关的类文件里,定义 ...

  2. MyBatis中的命名空间namespace的作用

    1.定义mapper接口,面向接口编程. 2.在大型项目中,可能存在大量的SQL语句,这时候为每个SQL语句起一个唯一的标识(ID)就变得并不容易了.为了解决这个问题,在MyBatis中,可以为每个映 ...

  3. C#正则表达式基础

    namespace ---> System.Text.RegularExpressions. static void Main(string[] args) { // if (IsInputMa ...

  4. iOS开发Runtime 方法替换

    通过#import <objc/runtime.h>我们可以找到: /** * Returns a specified instance method for a given class. ...

  5. C++ 海量代码 排查内存/GDI泄漏历程

    排查分两大部分: 1.代码静态分析,通过Code Review查找不合规范的代码点: 2.运行目标软件,结合内存监控工具,分析目标软件的代码,定位内存泄漏点. 目前能找到的代码静态分析软件:Cover ...

  6. Java 第十一届 蓝桥杯 省模拟赛 第十层的二叉树

    一棵10层的二叉树,最多包含多少个结点? 注意当一棵二叉树只有一个结点时为一层. 答案提交 这是一道结果填空的题,你只需要算出结果后提交即可.本题的结果为一个整数,在提交答案时只填写这个整数,填写多余 ...

  7. Java实现【USACO】1.1.2 贪婪的礼物送礼者 Greedy Gift Givers

    [USACO]1.1.2 贪婪的礼物送礼者 Greedy Gift Givers 题目描述 对于一群要互送礼物的朋友,你要确定每个人送出的礼物比收到的多多少(and vice versa for th ...

  8. Java实现 洛谷 P1170 兔八哥与猎人

    import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ...

  9. Java实现第九届蓝桥杯三体攻击

    三体攻击 [题目描述] 三体人将对地球发起攻击.为了抵御攻击,地球人派出了 A × B × C 艘战舰,在太空中排成一个 A 层 B 行 C 列的立方体.其中,第 i 层第 j 行第 k 列的战舰(记 ...

  10. java实现第六届蓝桥杯密文搜索

    密文搜索 福尔摩斯从X星收到一份资料,全部是小写字母组成. 他的助手提供了另一份资料:许多长度为8的密码列表. 福尔摩斯发现,这些密码是被打乱后隐藏在先前那份资料中的. 请你编写一个程序,从第一份资料 ...