随机抽样一致性(RANSAC)算法能够有效的剔除特征匹配中的错误匹配点。

实际上,RANSAC能够有效拟合存在噪声模型下的拟合函数。实际上,RANSAC算法的核心在于将点划分为“内点”和“外点”。在一组包含“外点”的数据集中,采用不断迭代的方法,寻找最优参数模型,不符合最优模型的点,被定义为“外点”。这就是RANSAC的核心思想。

RANSAC原理

OpenCV中滤除误匹配对采用RANSAC算法寻找一个最佳单应性矩阵H,矩阵大小为3×3。RANSAC目的是找到最优的参数矩阵使得满足该矩阵的数据点个数最多,通常令h33=1来归一化矩阵。由于单应性矩阵有8个未知参数,至少需要8个线性方程求解,对应到点位置信息上,一组点对可以列出两个方程,则至少包含4组匹配点对

RANSAC算法从匹配数据集中随机抽出4个样本并保证这4个样本之间不共线,计算出单应性矩阵,然后利用这个模型测试所有数据,并计算满足这个模型数据点的个数与投影误差(即代价函数),若此模型为最优模型,则对应的代价函数最小。

损失函数:

也就是通过随机抽样求解得到一个矩阵,然后验证其他的点是否符合模型,然后符合的点成为“内点”,不符合的点成为“外点”。下次依然从“新的内点集合”中抽取点构造新的矩阵,重新计算误差。最后误差最小,点数最多就是最终的模型。

RANSAC算法步骤:

RANSAC算法步骤:

1. 随机从数据集中随机抽出4个样本数据 (此4个样本之间不能共线),计算出变换矩阵H,记为模型M;

2. 计算数据集中所有数据与模型M的投影误差,若误差小于阈值,加入内点集 I ;

3. 如果当前内点集 I 元素个数大于最优内点集 I_best , 则更新 I_best = I,同时更新迭代次数k ;

4. 如果迭代次数大于k,则退出 ; 否则迭代次数加1,并重复上述步骤;

注:迭代次数k在不大于最大迭代次数的情况下,是在不断更新而不是固定的;

其中,p为置信度,一般取0.995;w为"内点"的比例 ; m为计算模型所需要的最少样本数=4;
关于RANSAC算法的思想,可以用下图表示

也就是RANSAC算法的本质是:在存在噪声的数据中,我们求解一个模型,使得非噪声数据可以用该模型表示,而噪声数据被排除在外。

分享三个讲解RANSAC算法的网址:

https://www.csdn.net/gather_2d/MtjaMg3sNDAwNS1ibG9n.html

https://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html

https://blog.csdn.net/yanghan742915081/article/details/83005442

随机抽样一致性(RANSAC)算法详解的更多相关文章

  1. RANSAC算法详解

    给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上.初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可.实际操作 ...

  2. 一致性hash算法详解

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179     一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...

  3. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  4. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  5. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  6. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  7. 【转】AC算法详解

    原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...

  8. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  9. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

  10. Tarjan算法详解

    Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...

随机推荐

  1. Nginx 实现 HTTPS(基于 Let's Encrypt 的免费证书)

    SSL / TLS加密会为您的用户带来更高的搜索排名和更好的安全性. Let’s Encrypt 是一个认证机构(CA).它可以提供免费证书,并且已经被大多数浏览器所信任.另外,通过工具 Certbo ...

  2. 自定义reaml创建使用实现认证

    注意清空shiro.ini 创建User对象 package cn.zys.Bean; public class User { private Integer id; private String u ...

  3. springboot的springMVC配置,源码

    1,前端控制器自动管理 DispatcherServletAutoConfiguration 中 此方法创建了前端控制器 注册了前端控制器 其中标黄色一行最后的  .getPath()方法点进去 St ...

  4. vue 基于elment UI tree 组件实现带引导、提示线

    实现样式 准备工作,先实现 树状组件的基本样式 <span style="height:500px; display:block; overflow-y:auto;" cla ...

  5. Linux,Mac下MySQL的安装及一些知识点的整理

    Linux下载安装 在服务器上下载的话,需要安装Mysql5.7相关的yum源 wget https://dev.mysql.com/get/mysql80-community-release-el7 ...

  6. PHP相关_几个操作记录下

    1.JSON转换 var cloneTesttaskList = <?php echo json_encode(json_encode($cloneTesttaskList));?>; v ...

  7. Servlet配置及生命周期

    1.设置Ecilipse快捷  file new 2.创建Servlet程序 1). 创建一个 Servlet 接口的实现类.              public class HelloServl ...

  8. ArcCore重构-打通Can各层ID配置

    https://mp.weixin.qq.com/s/JX7VZwyMqk_9iVMm_N2pxA https://mp.weixin.qq.com/s/5Y8Dt9j1-NQmnjfYhE19dg ...

  9. URL与URI的联系与区别

    作者:daixinye链接:https://www.zhihu.com/question/21950864/answer/154309494来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  10. Java实现 LeetCode 386 字典序排数

    386. 字典序排数 给定一个整数 n, 返回从 1 到 n 的字典顺序. 例如, 给定 n =1 3,返回 [1,10,11,12,13,2,3,4,5,6,7,8,9] . 请尽可能的优化算法的时 ...