运筹学课上,首先介绍了非线性规划算法中的无约束规划算法。二分法和黄金分割法是属于无约束规划算法的一维搜索法中的代表。

  二分法:$$x_{1}^{(k+1)}=\frac{1}{2}(x_{R}^{(k)}+x_{L}^{(k)}-\Delta)$$$$x_{2}^{(k+1)}=\frac{1}{2}(x_{R}^{(k)}+x_{L}^{(k)}+\Delta)$$

  黄金分割法:$$x_{1}^{(k+1)}=x_{R}^{(k)}-(\frac{\sqrt{5}-1}{2})(x_{R}^{(k)}-x_{L}^{(k)})$$$$x_{2}^{(k+1)}=x_{L}^{(k)}+(\frac{\sqrt{5}-1}{2})(x_{R}^{(k)}-x_{L}^{(k)})$$

  选择的$x_{1}^{(k+1)}$和$x_{2}^{(k+1)}$一定满足$$x_{L}^{(k)}<x_{1}^{(k+1)}<x_{2}^{(k+1)}<x_{R}^{(k)}$$

  下面确定新的不确定空间$I^{(k+1)}$

  情况1:若$f(x_{1}^{(k+1)})>f(x_{2}^{(k+1)})$,则$I^{(k+1)}=\left[x_{L}^{(k)},x_{2}^{(k+1)}\right]$

  情况2:若$f(x_{1}^{(k+1)})<f(x_{2}^{(k+1)})$,则$I^{(k+1)}=\left[x_{1}^{(k+1)},x_{R}^{(k)}\right]$

  情况3:若$f(x_{1}^{(k+1)})=f(x_{2}^{(k+1)})$,则$I^{(k+1)}=\left[x_{1}^{(k+1)},x_{2}^{(k+1)}\right]$

  下面记录下用Python实现二分法和黄金分割法的代码。

  二分法:

 import math
import numpy as np def anyfunction(x): # 在这里我们定义任意一个指定初始区间内的单峰函数,以x*cos(x)为例
return x*math.cos(x) Low = float(input("Please enter the lowbound: "))
High = float(input("Please enter the highbound: "))
High = np.pi # 在这里我们取初始上界为π,如果可以输入则注释掉这一行
echos = int(input("Please enter the echos: ")) # 迭代次数
small = float(input("Please enter the smallvalue: ")) # 公式中的Delta for i in range(1, echos + 1):
Lowvalue = anyfunction(0.5*(Low + High - small))
Highvalue = anyfunction(0.5*(Low + High + small))
print("echos: " + str(i))
print('before ' + "Lowbound: " + str(0.5*(Low + High - small)) + " Highbound: " + str(0.5*(Low + High + small)))
print('Lowvalue: ' + str(Lowvalue) + ' ' + 'Highvalue: ' + str(Highvalue))
if(Lowvalue == Highvalue):
Low = 0.5*(Low + High - small)
High = 0.5*(Low + High + small)
elif(Lowvalue < Highvalue):
Low = 0.5*(Low + High - small)
else:
High = 0.5*(Low + High + small)
print("Lowbound: " + str(Low) + " Highbound: " + str(High))

  输出结果如下:

  5次循环后极值点被限制在[0.7828981633974482,0.8907604338221292]内。

  黄金分割法:

 from math import sqrt, cos
import numpy as np def anyfunction(x): # 同上以函数x*cos(x)为例
return x*cos(x) Low = float(input("Please enter the lowbound: "))
High = float(input("Please enter the highbound: "))
High = np.pi # 同上,使用时应该注释掉
echos = int(input("Please enter the echos: ")) # 初始化,第一次运算不存在运算简化
uniquevalue = ((sqrt(5)-1)/2)*(High-Low)
value1 = anyfunction(High - uniquevalue)
value2 = anyfunction(Low + uniquevalue) for i in range(1, echos + 1):
print("echos: " + str(i))
print('before ' + "Lowbound: " + str(High - uniquevalue) + " Highbound: " + str(Low + uniquevalue))
print('value1: ' + str(value1) + ' ' + 'value2: ' + str(value2))
# 利用黄金分割法的性质减少一半的运算量
if(value1 == value2):
Low = High - uniquevalue
High = Low + uniquevalue
uniquevalue = ((sqrt(5)-1)/2)*(High-Low)
value1 = anyfunction(High - uniquevalue)
value2 = anyfunction(Low + uniquevalue)
elif(value1 < value2):
Low = High - uniquevalue
uniquevalue = ((sqrt(5)-1)/2)*(High-Low)
value1 = value2
value2 = anyfunction(Low + uniquevalue)
else:
High = Low + uniquevalue
uniquevalue = ((sqrt(5)-1)/2)*(High-Low)
value2 = value1
value1 = anyfunction(High - uniquevalue)
print("Lowbound: " + str(Low) + " Highbound: " + str(High))

  输出结果如下:

  5次循环后极值点被限制在[0.7416294238611398,1.0249066567190932]

Python实现二分法和黄金分割法的更多相关文章

  1. 利用python实现二分法和斐波那契序列

    利用python实现二分法:我的实现思路如下 1.判断要查找的值是否大于最大值,如果大于则直接返回False 2.判断要查找的值是否小于最小值,如果小于则直接返回False 3.如果要查找的值在最大值 ...

  2. 二分法和牛顿迭代实现开根号函数:OC的实现

    最近有人贴出BAT的面试题,题目链接. 就是实现系统的开根号的操作,并且要求一定的误差,其实这类题就是两种方法,二分法和牛顿迭代,现在用OC的方法实现如下: 第一:二分法实现 -(double)sqr ...

  3. 一些Python的惯用法和小技巧:Pythonic

    Pythonic其实是个模糊的含义,没有确定的解释.网上也没有过多关于Pythonic的说明,我个人的理解是更加Python,更符合Python的行为习惯.本文主要是说明一些Python的惯用法和小技 ...

  4. Todd's Matlab讲义第5讲:二分法和找根

    二分法和if ... else ... end 语句 先回顾一下二分法.要求方程\(f(x)=0\)的根.假设\(c = f(a) < 0\)和\(d = f(b) > 0\),如果\(f ...

  5. Python实现二分查找

    老生常谈的算法了. #!/usr/bin/python # -*- coding:utf-8 -*- # Filename: demo.py # 用python实现二分查找 def binarySea ...

  6. python实现二分查找算法

    二分查找算法也成为折半算法,对数搜索算法,一会中在有序数组中查找特定一个元素的搜索算法.搜索过程是从数组中间元素开始的 如果中间元素正好是要查找的元素,则搜索过程结束:如果查找的数大于中间数,则在数组 ...

  7. python关于二分查找

    楔子 如果有这样一个列表,让你从这个列表中找到66的位置,你要怎么做? l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72 ...

  8. Python递归函数,二分查找算法

    目录 一.初始递归 二.递归示例讲解 二分查找算法 一.初始递归 递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但 ...

  9. Python 实现二分查找(递归版)

    二分查找 为什么使用二分查找: python中的列表,一般取值为遍历这个列表,直到取到你想要的值,但是如果你的列表是一个有着百万元素的列表呢,那样for循环遍历列表就会很慢,可能会循环几十万次,才能找 ...

随机推荐

  1. pytest之fixture使用详解

    简介: fixture区别于unnitest的传统单元测试(setup/teardown)有显著改进: 1.有独立的命名,并通过声明它们从测试函数.模块.类或整个项目中的使用来激活. 2.按模块化的方 ...

  2. Java基础语法--java中字符串比较中的坑点

    Java 中两个字符串比较大小,可以有两种方式判定,要根据需求选择 == 判定,比较的是两个字符串的内存地址,地址相同则判定为true:反之则反 equals() 判定,比较的是两个字符串的内容,内容 ...

  3. [PHP学习教程 - 系统]001.引用文件(require & include)

    引用文件的方法有两种:require 及 include.两种方式提供不同的使用弹性. 1.require 的使用方法如 require("MyRequireFile.php"); ...

  4. 【图机器学习】cs224w Lecture 13 & 14 - 影响力最大化 & 爆发检测

    目录 Influence Maximization Propagation Models Linear Threshold Model Independent Cascade Model Greedy ...

  5. day07 作业

    作业(必做题):#1. 使用while循环输出1 2 3 4 5 6 8 9 10count=0while count<11: if count==7: count+=1 continue pr ...

  6. 实现一个字符串匹配算法,从字符串 H 中,查找 是否存在字符串 Y ,若是存在返回所在位置的索引,不存在返回 -1(不基于indexOf/includes方法)

    /** 1.循环原始字符串的每一项,让每一项从当前位置向后截取 H.length 个字符, 然后和 Y 进行比较,如果不一样,继续循环:如果一样返回当前索引即可 **/ function myInde ...

  7. Java实现 LeetCode 473 火柴拼正方形

    473. 火柴拼正方形 还记得童话<卖火柴的小女孩>吗?现在,你知道小女孩有多少根火柴,请找出一种能使用所有火柴拼成一个正方形的方法.不能折断火柴,可以把火柴连接起来,并且每根火柴都要用到 ...

  8. Java实现 LeetCode 322 零钱兑换

    322. 零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输 ...

  9. Java实现 LeetCode 217 存在重复元素

    217. 存在重复元素 给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 示例 1: 输入: [1,2,3 ...

  10. Java实现 蓝桥杯VIP 算法提高 3-2求存款

    算法提高 3-2求存款 时间限制:1.0s 内存限制:256.0MB 问题描述 见计算机程序设计基础(乔林)P50第5题. 接受两个数,一个是用户一年期定期存款金额,一个是按照百分比格式表示的利率,计 ...