HMM-前向后向算法理解与实现(python)

HMM-维特比算法理解与实现(python)

基本要素

  • 状态 \(N\)个

  • 状态序列 \(S = s_1,s_2,...\)

  • 观测序列 \(O=O_1,O_2,...\)

  • \(\lambda(A,B,\pi)\)

    • 状态转移概率 \(A = \{a_{ij}\}\)
    • 发射概率 \(B = \{b_{ik}\}\)
    • 初始概率分布 \(\pi = \{\pi_i\}\)
  • 观测序列生成过程

    • 初始状态
    • 选择观测
    • 状态转移
    • 返回step2

HMM三大问题

  • 概率计算问题(评估问题)

给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),计算 \(P(O|\lambda)\),即计算观测序列的概率

  • 解码问题

给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),找到对应的状态序列 \(S\)

  • 学习问题

给定观测序列 \(O=O_1O_2...O_T\),找到模型参数 \(\lambda (A,B,\pi)\),以最大化 \(P(O|\lambda)\),

概率计算问题

给定模型 \(\lambda\) 和观测序列 \(O\),如何计算\(P(O| \lambda)\)?

暴力枚举每一个可能的状态序列 \(S\)

  • 对每一个给定的状态序列

    \[P(O|S,\lambda) = \prod^T_{t=1} P(O_t|s_t,\lambda) =\prod^T_{t=1} b_{s_tO_t}
    \]

  • 一个状态序列的产生概率

    \[P(S|\lambda) = P(s_1)\prod^T_{t=2}P(s_t|s_{t-1})=\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}
    \]

  • 联合概率

    \[P(O,S|\lambda) = P(S|\lambda)P(O|S,\lambda) =\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}\prod^T_{t=1} b_{s_tO_t}
    \]

  • 考虑所有的状态序列

    \[P(O|\lambda)=\sum_S\pi_1b_{s_1O_1}\prod^T_{t=2}a_{s_{t-1}s_t}b_{s_tO_t}
    \]

\(O\) 可能由任意一个状态得到,所以需要将每个状态的可能性相加。

这样做什么问题?时间复杂度高达 \(O(2TN^T)\)。每个序列需要计算 \(2T\) 次,一共 \(N^T\) 个序列。

前向算法

在时刻 \(t\),状态为 \(i\) 时,前面的时刻观测到 \(O_1,O_2, ..., O_t\) 的概率,记为 \(\alpha _i(t)\) :

\[\alpha_{i}(t)=P\left(O_{1}, O_{2}, \ldots O_{t}, s_{t}=i | \lambda\right)
\]

当 \(t=1\) 时,输出为 \(O_1\),假设有三个状态,\(O_1\) 可能是任意一个状态发出,即

\[P(O_1|\lambda) = \pi_1b_1(O_1)+\pi_2b_2(O_1)+\pi_2b_3(O_1) = \alpha_1(1)+\alpha_2(1)+\alpha_3(1)
\]

当 \(t=2\) 时,输出为 \(O_1O_2\) ,\(O_2\) 可能由任一个状态发出,同时产生 \(O_2\) 对应的状态可以由 \(t=1\) 时刻任意一个状态转移得到。假设 \(O_2\) 由状态 1 发出,如下图

\[P(O_1O_2,s_2=q_1|\lambda) = \pi_1b_1(O_1)a_{11}b_1(O_2)+\pi_2b_2(O_1)a_{21}b_1(O_2)+\pi_2b_3(O_1)a_{31}b_1(O_2) \\
=\bold{\alpha_1(1)}a_{11}b_1(O_2)+\bold{\alpha_2(1)}a_{21}b_1(O_2)+\bold{\alpha_3(1)}a_{31}b_1(O_2) = \bold{\alpha_1(2)}
\]

同理可得 \(\alpha_2(2),\alpha_3(2)\)

\[\bold{\alpha_2(2)} = P(O_1O_2,s_2=q_2|\lambda)
=\bold{\alpha_1(1)}a_{12}b_2(O_2)+\bold{\alpha_2(1)}a_{22}b_2(O_2)+\bold{\alpha_3(1)}a_{32}b_2(O_2)
\\
\bold{\alpha_3(2)} = P(O_1O_2,s_2=q_3|\lambda)
=\bold{\alpha_1(1)}a_{13}b_3(O_2)+\bold{\alpha_2(1)}a_{23}b_3(O_2)+\bold{\alpha_3(1)}a_{33}b_3(O_2)
\]

所以

\[P(O_1O_2|\lambda) =P(O_1O_2,s_2=q_1|\lambda)+ P(O_1O_2,s_2=q_2|\lambda) +P(O_1O_2,s_2=q_3|\lambda)\\
= \alpha_1(2)+\alpha_2(2)+\alpha_3(2)
\]

所以前向算法过程如下:

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i(T)\)

相比暴力法,时间复杂度降低了吗?

当前时刻有 \(N\) 个状态,每个状态可能由前一时刻 \(N\) 个状态中的任意一个转移得到,所以单个时刻的时间复杂度为 \(O(N^2)\),总时间复杂度为 \(O(TN^2)\)

代码实现

例子:

假设从三个 袋子 {1,2,3}中 取出 4 个球 O={red,white,red,white},模型参数\(\lambda = (A,B,\pi)\) 如下,计算序列O出现的概率

  1. #状态 1 2 3
  2. A = [[0.5,0.2,0.3],
  3. [0.3,0.5,0.2],
  4. [0.2,0.3,0.5]]
  5. pi = [0.2,0.4,0.4]
  6. # red white
  7. B = [[0.5,0.5],
  8. [0.4,0.6],
  9. [0.7,0.3]]

​ step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)

​ step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i( T)\)

  1. #前向算法
  2. def hmm_forward(A,B,pi,O):
  3. T = len(O)
  4. N = len(A[0])
  5. #step1 初始化
  6. alpha = [[0]*T for _ in range(N)]
  7. for i in range(N):
  8. alpha[i][0] = pi[i]*B[i][O[0]]
  9. #step2 计算alpha(t)
  10. for t in range(1,T):
  11. for i in range(N):
  12. temp = 0
  13. for j in range(N):
  14. temp += alpha[j][t-1]*A[j][i]
  15. alpha[i][t] = temp*B[i][O[t]]
  16. #step3
  17. proba = 0
  18. for i in range(N):
  19. proba += alpha[i][-1]
  20. return proba,alpha
  21. A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
  22. B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
  23. pi = [0.2,0.4,0.4]
  24. O = [0,1,0,1]
  25. hmm_forward(A,B,pi,O) #结果为 0.06009

结果

后向算法

在时刻 \(t\),状态为 \(i\) 时,观测到 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率,记为 \(\beta _i(t)\) :

\[\beta_{i}(t)=P\left(O_{t+1},O_{t+2}, ..., O_T | s_{t}=i, \lambda\right)
\]

当 \(t=T\) 时,由于 \(T\) 时刻之后为空,没有观测,所以 \(\beta_i(t)=1\)

当 \(t = T-1\) 时,观测 \(O_T\) ,\(O_T\) 可能由任意一个状态产生

\[\beta_i(T-1) = P(O_T|s_{t}=i,\lambda) = a_{i1}b_1(O_T)\beta_1(T)+a_{i2}b_2(O_T)\beta_2(T)+a_{i3}b_3(O_T)\beta_3(T)
\]

当 \(t=1\) 时,观测为 \(O_{2},O_{3}, ..., O_T\)

\[\begin{aligned}
\beta_1(1)
&= P(O_{2},O_{3}, ..., O_T|s_1=1,\lambda)\\
&=a_{11}b_1(O_2)\beta_1(2)+a_{12}b_2(O_2)\beta_2(2)+a_{13}b_3(O_2)\beta_3(2)
\\
\quad
\\
\beta_2(1)
&= P(O_{2},O_{3}, ..., O_T|s_1=2,\lambda)\\
&=a_{21}b_1(O_2)\beta_1(2)+a_{22}b_2(O_2)\beta_2(2)+a_{23}b_3(O_2)\beta_3(2)
\\
\quad
\\
\beta_3(1)
&=P(O_{2},O_{3}, ..., O_T|s_1=3,\lambda)\\
&=a_{31}b_1(O_2)\beta_1(2)+a_{32}b_2(O_2)\beta_2(2)+a_{33}b_3(O_2)\beta_3(2)
\end{aligned}
\]

所以

\[P(O_{2},O_{3}, ..., O_T|\lambda) = \beta_1(1)+\beta_2(1)+\beta_3(1)
\]

后向算法过程如下:

​ step1:初始化 \(\beta_i(T)=1\)

​ step2:计算 \(\beta_i(t) = \sum^N_{j=1}a_{ij}b_j(O_{t+1})\beta_j(t+1)\)

​ step3:\(P(O|\lambda) = \sum^N_{i=1}\pi_ib_i(O_1)\beta_i(1)\)

  • 时间复杂度 \(O(N^2T)\)

代码实现

还是上面的例子

  1. #后向算法
  2. def hmm_backward(A,B,pi,O):
  3. T = len(O)
  4. N = len(A[0])
  5. #step1 初始化
  6. beta = [[0]*T for _ in range(N)]
  7. for i in range(N):
  8. beta[i][-1] = 1
  9. #step2 计算beta(t)
  10. for t in reversed(range(T-1)):
  11. for i in range(N):
  12. for j in range(N):
  13. beta[i][t] += A[i][j]*B[j][O[t+1]]*beta[j][t+1]
  14. #step3
  15. proba = 0
  16. for i in range(N):
  17. proba += pi[i]*B[i][O[0]]*beta[i][0]
  18. return proba,beta
  19. A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
  20. B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
  21. pi = [0.2,0.4,0.4]
  22. O = [0,1,0,1]
  23. hmm_backward(A,B,pi,O) #结果为 0.06009

结果

前向-后向算法

回顾前向、后向变量:

  • \(a_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_1,O_2, ..., O_t\) 的概率
  • \(\beta_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率

\[\begin{aligned}
P(O,s_t=i|\lambda)
&= P(O_1,O_2, ..., O_T,s_t=i|\lambda)\\
&= P(O_1,O_2, ..., O_t,s_t=i,O_{t+1},O_{t+2}, ..., O_T|\lambda)\\
&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T|O_1,O_2, ..., O_t,s_t=i,\lambda) \\
&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T,s_t=i|\lambda)\\
&= a_i(t)*\beta_i(t)
\end{aligned}
\]

即在给定的状态序列中,\(t\) 时刻状态为 \(i\) 的概率。

使用前后向算法可以计算隐状态,记 \(\gamma_i(t) = P(s_t=i|O,\lambda)\) 表示时刻 \(t\) 位于隐状态 \(i\) 的概率

\[P\left(s_{t}=i, O | \lambda\right)=\alpha_{i}(t) \beta_{i}(t)
\]

\[\begin{aligned}
\gamma_{i}(t)
&=P\left(s_{t}={i} | O, \lambda\right)=\frac{P\left(s_{t}={i}, O | \lambda\right)}{P(O | \lambda)} \\
&=\frac{\alpha_{i}(t) \beta_{i}(t)}{P(O | \lambda)}=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)}
\end{aligned}
\]

references:

[1] https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[2]https://www.cnblogs.com/fulcra/p/11065474.html

[3] https://www.cnblogs.com/sjjsxl/p/6285629.html

[4] https://blog.csdn.net/xueyingxue001/article/details/52396494

HMM-前向后向算法理解与实现(python)的更多相关文章

  1. HMM 前向后向算法(转)

    最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!) 代码自己重新写了一遍,所以就不把原文代码 ...

  2. HMM 自学教程(七)前向后向算法

    本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...

  3. 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

    隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...

  4. 条件随机场CRF(二) 前向后向算法评估标记序列概率

    条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在条件随机场CRF(一)中我们总结了CRF的模 ...

  5. 《统计学习方法》P179页10.22前向后向算法公式推导

  6. 隐马尔可夫(HMM)、前/后向算法、Viterbi算法

    HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下 ...

  7. 隐马尔可夫模型HMM与维特比Veterbi算法(一)

    隐马尔可夫模型HMM与维特比Veterbi算法(一) 主要内容: 1.一个简单的例子 2.生成模式(Generating Patterns) 3.隐藏模式(Hidden Patterns) 4.隐马尔 ...

  8. HMM-前向后向算法

    基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...

  9. HMM-前向后向算法(附python实现)

    基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...

随机推荐

  1. Linux学习笔记(七)关机、重启及常用的网络命令

    关机.重启命令 sync shutdown reboot init sync 英文原意:flush file system buffers 功能:刷新文件系统缓冲区,将内存中的数据保存到硬盘中 语法: ...

  2. v&n赛 内存取证题解(已更新)

    题目是一个raw的镜像文件 用volatility搜索一下进程 有正常的notepad,msprint,还有dumpit和truecrypt volatility -f mem.raw --profi ...

  3. Spring5:面向切面

    静态代理 缺点:一个真实角色就会产生一个代理角色,代码量会翻倍! 场景:要在写好的实现方法上加入日志功能(公共功能),不要修改原代码 1:原代码 业务接口: package com.spring; p ...

  4. python 基础篇 类基础与继承

    先来简单解释几个概念 类:一群有着相同属性和函数的对象的集合,这里对应 Python 的 class. 对象:集合中的一个事物,这里对应由 class 生成的某一个 object,比如代码中的 har ...

  5. 一篇文章掌握网页解析神器——xpath

    学爬虫不会xpath解析数据? 今天老师带你一堂课带你从零开始精通xpath,从此轻松提取网页信息. 我们在爬虫的过程中,经常会遇到html字符串数据,很多我们需要的数据不是作为标签的文本就是作标签的 ...

  6. Maven Wrapper简介

    文章目录 简介 Maven Wrapper的结构 下载Maven Wrapper 使用 Maven Wrapper简介 简介 开发java项目少不了要用到maven或者gradle,对比gradle而 ...

  7. js 实现文字滚动功能,可更改配置参数 带完整版解析代码。

    前言:         本人纯小白一个,有很多地方理解的没有各位大牛那么透彻,如有错误,请各位大牛指出斧正!小弟感激不尽.         本篇文章为您分析一下原生JS写文字滚动效果 需求分析: 需要 ...

  8. 解决从dockerhub上下载debian:jessie失败

    解决从dockerhub上下载debian:jessie失败 笔者使用docker build 构建镜像出现下面的错误 Step 1/12 : FROM debian:jessie Get https ...

  9. 8种MySQL分页方法总结

    这篇文章主要介绍了8种MySQL分页方法总结,小编现在才知道,MySQL分页竟然有8种实现方法,本文就一一讲解了这些方法,需要的朋友可以参考下 MySQL的分页似乎一直是个问题,有什么优化方法吗?网上 ...

  10. 2019年广东工业大学腾讯杯新生程序设计竞赛(同步赛)E-缺席的神官

    链接:https://ac.nowcoder.com/acm/contest/3036/E 来源:牛客网 题目描述 面前的巨汉,让我想起了多年前的那次,但这个巨汉身上散布着让人畏惧害怕的黑雾.即使看不 ...