为了在统一框架里分析周期信号与非周期信号,可以给周期信号也建立傅里叶变换。

有两种方法求周期信号的傅里叶变换:

**1. 利用傅里叶级数进行构造 **

对于周期信号\(x(t)\),其傅里叶级数展开式为:

\[x(t) = \sum_{k = -\infty}^{+\infty}a_ke^{jkw_0t}
\]

系数\(a_k\)表示为:



由于



说明周期性复指数信号的频谱是一个冲激,那么我们推广这个关系,可得:



表明:周期信号的傅里叶变换由一系列等间隔的冲激函数线性组合而成,每个冲激分别位于信号各次谐波的频率处,其强度是傅里叶级数系数的\(2\pi\)倍。

2. 周期延拓

这种方法先将\(x(t)\)在一个周期内截断,得信号\(x_T(t)\),求出\(x_T(t)\)的傅里叶变换\(X_T(w)\),再对\(X_T(w)\)周期延拓得\(X(w)\)。

具体来说:

根据\(\delta\)函数性质,有:

\[x(t) = x_T(t)*\sum_{k = -\infty}^{+\infty}\delta(t - kT)
\]

设周期冲激串\(\sum_{k = -\infty}^{+\infty}\delta(t - kT)\)的傅里叶变换为\(F(w)\),

由时域卷积定理:

\[X(w) = X_T(w)F(w)
\]

又时域周期为T的周期冲激串的傅里叶变换在频域是一个周期为\(\frac{2\pi}{T}\)的周期冲激串,即:

\[F(w) = \frac{2\pi}{T}\sum_{k = -\infty}^{+\infty}\delta(w - \frac{2\pi k}{T})
\]

故可得:

\[X(w) = \frac{2\pi}{T}X_T(w)\sum_{k = -\infty}^{+\infty}\delta(w - \frac{2\pi k}{T})
\]

也就是:

\[X(w) = w_0\sum_{k = -\infty}^{+\infty}X_T(kw_0)\delta(w - kw_0)
\]

我们对比两种方法得到的结果,可知:

周期信号傅里叶级数的系数\(a_k = \frac{1}{T}X_T(kw_0)\)

Fourier Transform的更多相关文章

  1. 傅里叶变换 - Fourier Transform

    傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\o ...

  2. 短时傅里叶变换(Short Time Fourier Transform)原理及 Python 实现

    原理 短时傅里叶变换(Short Time Fourier Transform, STFT) 是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类, 其指定了任意信号随时间和频率变 ...

  3. 数字图像处理实验(5):PROJECT 04-01 [Multiple Uses],Two-Dimensional Fast Fourier Transform 标签: 图像处理MATLAB数字图像处理

    实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and ver ...

  4. 「学习笔记」Fast Fourier Transform

    前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...

  5. 【OI向】快速傅里叶变换(Fast Fourier Transform)

    [OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 ​ 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. ​ (以下应用只针对OI) ​ 一句话:求多项式 ...

  6. 使用 scipy.fft 进行Fourier Transform:Python 信号处理

    摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:P ...

  7. 从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform)

    从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform) 一. 傅里叶级数(FS) 首先从最直观的开始,我们有一个信号\(x(t)\)(满足 ...

  8. 【manim】3b1b的"Almost" Fourier Transform复刻

    最近在做Fourier Transform的内容,记录一下今天下午的成果. 本文代码全部自行编写,需要math and music项目完整工程可以在gayhub上获取.(现在还没弄完,就先不发了.) ...

  9. FWT与High dick(划掉改成Dimensional) Fourier Transform

    我们大家都知道xor卷积有个很好的做法:FWT.FWT的变换形式是很好看的 // 说明一下Vector可以向量化运算,也可以当做数组来slice与concat Vector tf(A,2^n){ Ve ...

  10. 1250 Super Fast Fourier Transform(湘潭邀请赛 暴力 思维)

    湘潭邀请赛的一题,名字叫"超级FFT"最终暴力就行,还是思维不够灵活,要吸取教训. 由于每组数据总量只有1e5这个级别,和不超过1e6,故先预处理再暴力即可. #include&l ...

随机推荐

  1. 汇编刷题:统计2000H开始的正负数的个数

    DATA SEGMENT ORG 2000H INFO DB 1,2,3,4,5,70H,71H,72H,80H,92H N_NUMS DB 00H P_NUMS DB 00H DATA ENDS C ...

  2. C#两大知名Redis客户端连接哨兵集群的姿势

    前言 前面利用<Docker-Compose搭建Redis高可用哨兵集群>, 我们的思路是将Redis.Sentinel.Redis Client App链接到同一个网桥网络,这个网桥内的 ...

  3. Python之 module安装

    如出现这种错误 ModuleNotFoundError: No module named 'numpy' 这种错误通常不会出现,因为Python的模块,通常在你安装Python shell的时候,就已 ...

  4. 中阶 d05 tomcat 安装 eclipse上配置tomcat

    eclipse使用参考 https://www.bilibili.com/video/av49438855/?p=24 1. 直接解压 ,然后找到bin/startup.bat 2. 可以安装 启动之 ...

  5. 34.2 字节流 InputStreamReader OutputStreamWriter

    使用方法同字符流,不一样的是数据类型是字节 copydemo public static void main(String[] args) throws IOException { InputStre ...

  6. 28.1 api-- Object(toString equals)

    /* * String toString() : 返回该对象的字符串表示 * return getClass().getName() + "@" + Integer.toHexSt ...

  7. Nexus3 集成 crowd 插件

    公司使用的软件开发和协作工具为 Atlassian 系列软件,所以统一使用 crowd 来实现统一登录(SSO). crowd 配置 具体操作细节见我之前写的 Atlassian 系列软件安装(Cro ...

  8. 基于 Njmon + InfluxDB + Grafana 实现性能指标实时可视监控

    引言 最近逛 nmon 官网时,发现了一个新工具 njmon,功能与 nmon 类似,但输出为 JSON 格式,可以用于服务器性能统计. 可以使用 njmon 来向 InfluxDB 存储服务器性能统 ...

  9. A. Number Theory Problem

    题目大意:计算小于2^n,且满足2^k-1并且是7的倍数的个数 思路:优先打表,数据不大,1e5,然后求个前n项和 #include<bits/stdc++.h> using namesp ...

  10. Matlab学习-(2)

    1. 文件读取 在编写一个matlab项目时候,通常要导入很多不同格式的数据,下面我们来学习不同的导入函数.(1) 保存工作区MATLAB支持工作区的保存.用户可以将工作区或工作区中的变量以文件的形式 ...