bzoj4173 数学
bzoj4173 数学
欧拉\(\varphi\)函数,变形还是很巧妙的
求:
\]
首先,对\(\sum\)下面那一坨进行变形
很容易知道,\(n\bmod k+m\bmod k=n-\lfloor\dfrac{n}{k}\rfloor\cdot k+m-\lfloor\dfrac{m}{k}\rfloor\cdot k<2k\)
那么对不等式同时除以\(k\),就是\(1\le \dfrac{n+m}{k}-\lfloor\dfrac{n}{k}\rfloor-\lfloor\dfrac{m}{k}\rfloor<2\)
然后把那个\(\frac{n+m}{k}\)来个下取整,这个式子就变成了\(1\),也就是:
\]
所以只看那个\(\sum\)就是:
\]
然后又由于\(\lfloor\dfrac{n+m}{k}\rfloor-\lfloor\dfrac{n}{k}\rfloor-\lfloor\dfrac{m}{k}\rfloor=1\)只有\(0,1\)两个值,是\(1\)符合要求是\(0\)不符合,所以可以把上式继续拆:
\]
\]
下面考虑如何求\(\sum_{i=1}^n\varphi(i)\lfloor\dfrac{n}{i}\rfloor\)就行了
想要推这个,先证明一个结论:\(n=\sum_{d\mid n}\varphi(d)\)
列举出如下分数:
\(\dfrac{1}{n},\dfrac{2}{n},\cdots,\dfrac{n}{n}\)
然后把他们化简
当且仅当\(d\mid n,\gcd(a,d)=1\),分数\(\frac{a}{d}\)出现在其中
那么,以\(d\)为分母的分数有\(\varphi(d)\)个,\(d\)可以取遍\(n\)的所有因数
又因为这些分数的个数是\(n\),所以\(n=\sum_{d\mid n}\varphi(d)\)
那么把\(\sum\)里面那一些,理解为\(\lfloor\frac{n}{i}\rfloor\)个\(\varphi(i)\)相加
而从\(1\)到\(n\)中,有\(\lfloor\frac{n}{i}\rfloor\)个数是\(i\)的倍数,所以我们枚举这\(n\)个数:
\]
然后用刚才说的结论,变形为:
\]
所以答案就清晰了:
\]
最后由于数很大一定要频繁取模
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline LL read(){
register LL x=0;register int y=1;
register char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
#define mod 998244353
inline LL phi(LL x){
reg LL ret=x;
int sqrt=std::ceil(std::sqrt(x));
for(reg int i=2;i<=sqrt;i++){
if(!(x%i)) ret=ret/i*(i-1);
while(!(x%i)) x/=i;
}
if(x>1) ret=ret/x*(x-1);
return ret;
}
int main(){
LL n=read(),m=read();
std::printf("%lld",phi(n)%mod*(phi(m)%mod)%mod*(n%mod)%mod*(m%mod)%mod);
return 0;
}
bzoj4173 数学的更多相关文章
- 【BZOJ4173】数学 欧拉函数神题
[BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...
- 【BZOJ-4173】数学 欧拉函数 + 关于余数的变换
4173: 数学 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 306 Solved: 163[Submit][Status][Discuss] D ...
- 「BZOJ4173」数学
题面 已知 \[\large{S(n,m)=\{k_{1},k_{2},\cdots k_{i}\}}\] 且每个 \(k\) 满足 \[\large{n \%k+m\%k\geq k}\] 求 \[ ...
- 【BZOJ4173】数学 题解(数论)
前言:体验到了推式子的快感orz 题目大意:求$\varphi(n)*\varphi(m)*\sum_{n\ mod\ k+m\ mod\ k\geq k} \varphi(k)\ mod\ 9982 ...
- 数学思想:为何我们把 x²读作x平方
要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...
- 速算1/Sqrt(x)背后的数学原理
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...
- MarkDown+LaTex 数学内容编辑样例收集
$\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...
- 深度学习笔记——PCA原理与数学推倒详解
PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...
- Sql Server函数全解<二>数学函数
阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...
随机推荐
- 37.2 net-- tcp传输 ServerSocket、Socket
一.打开server端 package day35_net_网络编程.tcp传输; import java.io.IOException; import java.io.InputStream; im ...
- Apache Hudi 设计与架构最强解读
感谢 Apache Hudi contributor:王祥虎 翻译&供稿. 欢迎关注微信公众号:ApacheHudi 本文将介绍Apache Hudi的基本概念.设计以及总体基础架构. 1.简 ...
- "五号标题"组件:<h5> —— 快应用组件库H-UI
 <import name="h5" src="../Common/ui/h-ui/text/c_h5"></import> < ...
- spark 大杂烩
累加器 val dataRdd = sc.makeRDD(List(1, 2, 3, 4), 2) var sum = 0 //累加器可以收集driver和各个excuter中累加的结果 //如果此处 ...
- 教你爬取腾讯课堂、网易云课堂、mooc等所有课程信息
本文的所有代码都在GitHub上托管,想要代码的同学请点击这里
- AJ学IOS(45)之常用的小功能比如打电话、打开网址、发邮件、发短信打开其他应用。
AJ分享,必须精品 简介 iOS中的很多小功能都是非常简单的,几行代码就搞定了,比如打电话.打开网址.发邮件.发短信.打开其他应用等. 打电话 方法1 最简单最直接的方式:直接跳到拨号界面 NSURL ...
- H - Hamiltonian Hypercube Gym - 101170H
规律题 首先我们要知道他的顺序是怎么来的,首先当n等于1时,是0,1 当n=2时,先按照与按顺序在他们前面分别加0,即00,01,在逆序加1,即11,10 构成的顺序为00,01,11,10:往后同理 ...
- 格式化启动盘win10
我这个(U盘)磁盘被分成了两个区,不能直接格式化 第一步: 第二步: 删除完了之后,选择格式化,ok. 说明:格式化时要选择系统. 常规NTFS 缺点:老设备,比如打印机,监控机识别不了. FAT系 ...
- Laravel joinSub 子查询的写法
$subQuery = $model::query() ->from('table1 as a') ->getQuery(); $query = $model::query() -> ...
- [Laravel框架学习二]:Laravel的CURD和查询构造器的CURD,以及聚合函数
public function index() { //return Member::getMember();//这是调用模型的方法 return view('lpc',[ 'age'=>18, ...