数学--数论--HDU 5223 - GCD
Describtion
In mathematics, the greatest common divisor (gcd) of two or more integers, when at least one of them is not zero, is the largest positive integer that divides the numbers without a remainder. For example, the GCD of 8 and 12 is 4.—Wikipedia
BrotherK and Ery like playing mathematic games. Today, they are playing a game with GCD.
BrotherK has an array A with N elements: A1 ~ AN, each element is a integer in [1, 10^9]. Ery has Q questions, the i-th question is to calculate
GCD(ALi, ALi+1, ALi+2, …, ARi), and BrotherK will tell her the answer.
BrotherK feels tired after he has answered Q questions, so Ery can only play with herself, but she don’t know any elements in array A. Fortunately, Ery remembered all her questions and BrotherK’s answer, now she wants to recovery the array A.
Input
The first line contains a single integer T, indicating the number of test cases.
Each test case begins with two integers N, Q, indicating the number of array A, and the number of Ery’s questions. Following Q lines, each line contains three integers Li, Ri and Ansi, describing the question and BrotherK’s answer.
T is about 10
2 ≤ N Q ≤ 1000
1 ≤ Li < Ri ≤ N
1 ≤ Ansi ≤ 109
Output
For each test, print one line.
If Ery can’t find any array satisfy all her question and BrotherK’s answer, print “Stupid BrotherK!” (without quotation marks). Otherwise, print N integer, i-th integer is Ai.
If there are many solutions, you should print the one with minimal sum of elements. If there are still many solutions, print any of them.
Sample Input
2
2 2
1 2 1
1 2 2
2 1
1 2 2
Sample Output
Stupid BrotherK!
2 2
由于区间长度只有1000,所以暴力枚举,完事了,最后在检查一编完事。
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
long long n, q;
long long num[N], l[N], r[N], s[N];
long long gcd(long long a, long long b)
{
if (b == 0)
{
return a;
}
else
{
return gcd(b, a % b);
}
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
cin >> n >> q;
for (int i = 0; i < N; ++i)
{
num[i] = 1;
}
for (int i = 0; i < q; ++i)
{
cin >> l[i] >> r[i] >> s[i];
for (int j = l[i]; j <= r[i]; ++j)
{
num[j] = (num[j] * s[i]) / gcd(num[j], s[i]);
}
}
bool flag = true;
for (int i = 0; i < q; i++)
{
long long ans = num[l[i]];
for (int j = l[i] + 1; j <= r[i]; j++)
{
ans = gcd(ans, num[j]);
}
if (ans != s[i])
{
flag = false;
break;
}
}
if (flag)
{
for (int i = 1; i <n; i++)
{
cout << num[i]<<" ";
}
cout<<num[n]<<endl;
}
else
{
printf("Stupid BrotherK!\n");
}
}
return 0;
}
数学--数论--HDU 5223 - GCD的更多相关文章
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 数学--数论--HDU 5382 GCD?LCM?(详细推导,不懂打我)
Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the ...
- 数学--数论--HDU 5019 revenge of GCD
Revenge of GCD Problem Description In mathematics, the greatest common divisor (gcd), also known as ...
- 数学--数论--HDU 1792 A New Change Problem (GCD+打表找规律)
Problem Description Now given two kinds of coins A and B,which satisfy that GCD(A,B)=1.Here you can ...
- 数学--数论--HDU 2582 F(N) 暴力打表找规律
This time I need you to calculate the f(n) . (3<=n<=1000000) f(n)= Gcd(3)+Gcd(4)+-+Gcd(i)+-+Gc ...
- HDU 5223 GCD
题意:给出一列数a,给出m个区间,再给出每个区间的最小公倍数 还原这列数 因为数组中的每个数至少都为1,而且一定是这个区间的最小公约数ans[i]的倍数,求出它与ans[i]的最小公倍数,如果大于1e ...
- 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂
Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...
- 数学--数论--HDU - 6322 打表找规律
In number theory, Euler's totient function φ(n) counts the positive integers up to a given integer n ...
- 数学--数论--HDU 1098 Ignatius's puzzle (费马小定理+打表)
Ignatius's puzzle Problem Description Ignatius is poor at math,he falls across a puzzle problem,so h ...
随机推荐
- MTK Android Driver :Battery电池曲线
MTK Android Driver :battery电池曲线 1.配置文件位置: CUSTOM_KERNEL_BATTERY= battery mediatek\custom\\kernel\bat ...
- 2017蓝桥杯算式900(C++C组)
题目:算式900 小明的作业本上有道思考题: 看下面的算式: (□□□□-□□□□)*□□=900 其中的小方块代表0~9的数字,这10个方块刚好包含了0~9中的所有数字. 注意:0不能作为某 ...
- Python库-NumPy
NumPy是一个开源的Python科学计算库,用于快速处理任意维度的数组. 创建NumPy数组 #创建一维数组 list1 = [1,2,3,4] array1= np.array(list1)#用p ...
- centos7 NAT链接配置(静态ip/修改网卡名为eth0)|1
NAT的静态ip设置并且修改网卡名为eth0 1 cd /etc/sysconfig/network-scripts/ mv eno16777736 ifcfg-eth0 #修改名称 vi eth0 ...
- linux 下强大的 JSON 解析命令 jq
介绍 jq is like sed for JSON data - you can use it to slice and filter and map and transform structure ...
- 在众多小说中,Python告诉你哪本小说好看
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 有趣的Python PS:如有需要Python学习资料的小伙伴可以 ...
- c++全排列
一.概念 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列.当m=n时所有的排列情况叫全排列.如果这组数有n个,那么全排列数为n!个. 比如a ...
- jQuer实时监控input对table进行筛选
记得以前写过一个预定表格~~~~~比这个更难,一大串前端js~~~忘了~~~好记性不如烂笔头~~记录下,既帮助别人,也帮助自己~~~ 实现思路~通过.on监听input标签的内容变化,通过this获取 ...
- beanshell 常用的内置变量与函数
官方详细文档:https://github.com/beanshell/beanshell/wiki log:用来记录日志文件 log.info("jmeter"); vars - ...
- redis: List列表类型(四)
list设置值(头部):lpush list one list设置值(尾部):**rpush ** list one list获取值:lrange list 0 -1 list获取指定范围的值:lra ...