Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D

Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3
题意:每头牛都有爱吃的食物和饮料。每头牛只能吃一个食物一瓶饮料,饮料与食物最多被吃一次,问你最多有多少头牛能够吃的喜欢的食物且喝到自己喜欢的饮料。

这个题大家都会想到,如果设置一个源点,一个汇点,建图如下:

这样设置边的容量1,然后网络流即可到这里,大家还都能听明白吧,因为这样走必然会经过一个食物和饮料,但是有一个问题是什么,因为每头牛只能喝一瓶吃一个食物, 所以这里要将牛拆点,通过拆点后可 i和i'添加 i--i '的权值为1的边达到限流建图的目的,然后跑一边的最大流即可。

//RQ的板子真的很好用

#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
//---------------------------------Sexy operation--------------------------// #define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define debug(n) printf("%d_________________________________\n",n);
#define speed ios_base::sync_with_stdio(0)
#define file freopen("input.txt","r",stdin);freopen("output.txt","w",stdout)
//-------------------------------Actual option------------------------------//
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Swap(a,b) a^=b^=a^=b
#define Max(a,b) (a>b?a:b)
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define mp(a,b) make_pair(a,b)
#define pb(n) push_back(n)
#define dis(a,b,c,d) ((double)sqrt((a-c)*(a-c)+(b-d)*(b-d)))
//--------------------------------constant----------------------------------// #define INF 0x3f3f3f3f
#define esp 1e-9
#define PI acos(-1)
using namespace std;
typedef pair<int,int>PII;
typedef pair<string,int>PSI;
typedef long long ll;
//___________________________Dividing Line__________________________________/
#define maxn 500+5 struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int flow):from(f),to(t),cap(c),flow(flow){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int cur[maxn];
int d[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=1;i<=n;i++) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int> Q;
d[s]=0;
Q.push(s);
vis[s]=true;
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
Q.push(e.to);
d[e.to]= 1+d[x];
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow) ))>0 )
{
e.flow+=f;
edges[G[x][i]^1].flow -=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
} int Maxflow()
{
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}DC; int main()
{
int N,D,F;
while(scanf("%d%d%d",&N,&F,&D)==3)
{
int T=N*2+D+F+1;
DC.init(T+1,0,T);
for(int i=1;i<=N;i++)
{
int FN,DN,tem;
cini(FN),cini(DN);
while(FN--)
{
cini(tem);
DC.AddEdge(tem+N*2,i,1);
}
while(DN--)
{
cini(tem);
DC.AddEdge(N+i,tem+F+N*2,1);
}
DC.AddEdge(i,N+i,1);
}
for(int i=1;i<=F;++i)
{
DC.AddEdge(0,i+N*2,1);
}
for(int i=1;i<=D;++i)
{
DC.AddEdge(i+N*2+F,T,1);
}
printf("%d\n",DC.Maxflow());
}
return 0;
}

图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)的更多相关文章

  1. 网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)

    Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...

  2. 【网络流#7】POJ 3281 Dining 最大流 - 《挑战程序设计竞赛》例题

    不使用二分图匹配,使用最大流即可,设源点S与汇点T,S->食物->牛->牛->饮料->T,每条边流量为1,因为流过牛的最大流量是1,所以将牛拆成两个点. 前向星,Dini ...

  3. POJ 3281 Dining (网络流)

    POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...

  4. POJ 3281 Dining(最大流)

    POJ 3281 Dining id=3281" target="_blank" style="">题目链接 题意:n个牛.每一个牛有一些喜欢的 ...

  5. coding++:高并发解决方案限流技术-使用RateLimiter实现令牌桶限流-Demo

    RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时 ...

  6. 高并发解决方案限流技术-----使用RateLimiter实现令牌桶限流

    1,RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率.通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位 ...

  7. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  8. POJ 3281 Dining (网络流之最大流)

    题意:农夫为他的 N (1 ≤ N ≤ 100) 牛准备了 F (1 ≤ F ≤ 100)种食物和 D (1 ≤ D ≤ 100) 种饮料.每头牛都有各自喜欢的食物和饮料, 而每种食物或饮料只能分配给 ...

  9. POJ 3281 Dining(网络流拆点)

    [题目链接] http://poj.org/problem?id=3281 [题目大意] 给出一些食物,一些饮料,每头牛只喜欢一些种类的食物和饮料, 但是每头牛最多只能得到一种饮料和食物,问可以最多满 ...

随机推荐

  1. MySQL入门,第六部分,关系代数

    关系代数是一种集合操作为基础过程化查询语言,特点:运算对象是关系,运算结果亦为关系 一.关系代数的特点 运算对象:关系 运算结果:关系 运算符:四类 集合运算符 专门的关系运算符 算术比较符 逻辑运算 ...

  2. jvm入门及理解(一)——简介与体系架构

    最近,在学习java虚拟机的内容中,在此总结和记录下学到的. 一.JVM在计算机中的位置 在我们初学java时,便知道java源文件文件会先通过Java编译器编译成字节码文件,这个过程是java编译过 ...

  3. mysql yum源安装

    部署服务器环境的时候经常要安装mysql,以下是常见的安装方式 源码安装 rpm包安装 yum源安装 这篇主要介绍yum源安装. yum源下载 进入 https://dev.mysql.com/dow ...

  4. Tomcat5的web应用启动顺序详解

    Tomcat5的web应用启动顺序详解 [收藏此页] [打印]   作者:佚名  2007-07-17 内容导航: 第1页   [IT168技术文档]摘要: 应用Tomcat对于我们来讲实在是司空见惯 ...

  5. 子域名爆破工具:OneForALL

    0x00 简介 OneForAll是一款功能强大的子域收集工具 0x01 下载地址 码云: https://gitee.com/shmilylty/OneForAll.git Github: http ...

  6. syncronized如何上锁

    上锁,根据操作系统所说的原则,对共享变量上锁,对临界区上锁.谁访问临界资源?就给谁上锁 同步监视器,它上锁的对象. 1.用关键字给方法上锁 2.用synchronized代码块上锁 默认上锁对象:th ...

  7. 跑Linux内存占用率的shell脚本

    #!/bin/bash ################################################################ # Mem Used Script # eg. ...

  8. 今天我们来讨论一下display和visibility两个CSS属性。

    在讨论着两个属性之前我们先来看看HTML标签的全局属性.就是可以直接在HTML标签上直接写的属性. 以下是菜鸟教程的截图: 1.看以下第一个快捷键的属性accesskey;设置的就不多说了.主要就是2 ...

  9. CSRF(跨站请求伪造)学习总结

    前言 参考大佬的文章,附上地址 https://www.freebuf.com/articles/web/118352.html 什么是CSRF? CSRF,中文名字,跨站请求伪造,听起来是不是和XS ...

  10. python第三方库安装与卸载

    一.检查python环境是否正常 python安装完毕并设置环境变量后,可在cmd中运行python查看,显示版本等信息  二.查看已经安装的第三方库 通过pip list可查看已安装的库,以及对应的 ...