SeetaFaceEngine系列3:Face Identification编译和使用
前面两篇介绍了怎样编译SeetaFace的前两部分,现在就来讲下第三部分Face Identification的编译和使用。
其实,步骤基本上是一直的,如下:
1、新建一个空的DLL工程;
2、修改配置器;
3、添加include
4、添加lib文件路径和依赖项
5、修改预处理器
6、打开OpenMP
7、添加源文件到工程中
这里,将FaceIdentification\src文件夹下的所有文件(test除外)添加到工程中:
8、编译工程得到lib文件和dll文件(Release的步骤也是一样的)
9、使用Face Identification进行人脸匹配
FaceIdentification\src\test文件夹下有两个测试文件test_face_recognizer.cpp和test_face_verification.cpp,其中test_face_recognizer.cpp是测试各项功能的,包括人脸剪切、特征提取和匹配,后者是直接输入两幅图,计算匹配度,这里我测试了第二个的功能。
代码如下:
int testFaceRecognizer(std::string src_Path1, std::string src_Path2)
{
seeta::FaceDetection detector("D:/SeetaFaceEngine/include_lib/model/FaceDetection/seeta_fd_frontal_v1.0.bin");
detector.SetMinFaceSize(40);
detector.SetScoreThresh(2.f);
detector.SetImagePyramidScaleFactor(0.8f);
detector.SetWindowStep(4, 4);
// Initialize face alignment model
seeta::FaceAlignment point_detector("D:/SeetaFaceEngine/include_lib/model/FaceAlignment/seeta_fa_v1.1.bin");
// Initialize face Identification model
seeta::FaceIdentification face_recognizer((MODEL_DIR + "seeta_fr_v1.0.bin").c_str());
std::string test_dir = DATA_DIR + "test_face_recognizer/";
//load image
cv::Mat gallery_img_color = cv::imread(src_Path1, 1);
cv::Mat gallery_img_gray;
cv::cvtColor(gallery_img_color, gallery_img_gray, CV_BGR2GRAY);
cv::Mat probe_img_color = cv::imread(src_Path2, 1);
cv::Mat probe_img_gray;
cv::cvtColor(probe_img_color, probe_img_gray, CV_BGR2GRAY);
seeta::ImageData gallery_img_data_color(gallery_img_color.cols, gallery_img_color.rows, gallery_img_color.channels());
gallery_img_data_color.data = gallery_img_color.data;
seeta::ImageData gallery_img_data_gray(gallery_img_gray.cols, gallery_img_gray.rows, gallery_img_gray.channels());
gallery_img_data_gray.data = gallery_img_gray.data;
seeta::ImageData probe_img_data_color(probe_img_color.cols, probe_img_color.rows, probe_img_color.channels());
probe_img_data_color.data = probe_img_color.data;
seeta::ImageData probe_img_data_gray(probe_img_gray.cols, probe_img_gray.rows, probe_img_gray.channels());
probe_img_data_gray.data = probe_img_gray.data;
// Detect faces
std::vector<seeta::FaceInfo> gallery_faces = detector.Detect(gallery_img_data_gray);
int32_t gallery_face_num = static_cast<int32_t>(gallery_faces.size());
std::vector<seeta::FaceInfo> probe_faces = detector.Detect(probe_img_data_gray);
int32_t probe_face_num = static_cast<int32_t>(probe_faces.size());
if (gallery_face_num == 0 || probe_face_num == 0)
{
std::cout << "Faces are not detected.";
return 0;
}
// Detect 5 facial landmarks
seeta::FacialLandmark gallery_points[5];
point_detector.PointDetectLandmarks(gallery_img_data_gray, gallery_faces[0], gallery_points);
seeta::FacialLandmark probe_points[5];
point_detector.PointDetectLandmarks(probe_img_data_gray, probe_faces[0], probe_points);
for (int i = 0; i < 5; i++)
{
cv::circle(gallery_img_color, cv::Point(gallery_points[i].x, gallery_points[i].y), 2,CV_RGB(0, 255, 0));
cv::circle(probe_img_color, cv::Point(probe_points[i].x, probe_points[i].y), 2, CV_RGB(0, 255, 0));
}
cv::imshow("gallery_point_result.jpg", gallery_img_color);
cv::imshow("probe_point_result.jpg", probe_img_color);
// Extract face identity feature
float gallery_fea[2048];
float probe_fea[2048];
face_recognizer.ExtractFeatureWithCrop(gallery_img_data_color, gallery_points, gallery_fea);
face_recognizer.ExtractFeatureWithCrop(probe_img_data_color, probe_points, probe_fea);
// Caculate similarity of two faces
float sim = face_recognizer.CalcSimilarity(gallery_fea, probe_fea);
std::cout << sim << std::endl;
cv::waitKey(0);
}
匹配的结果如下:
两幅人脸的相似度是0.6850。
OK,至此,SeetaFace的三个功能基本就介绍完了。那人脸检测和识别的库有很多很多很多很多...很多,然后我之所以要用下这个,原因也很简单,其他开源库要依赖的东西稍微多一些,这个库相对就少,唯一一个依赖的也是OpenCV,配置真的也挺简单的,速度也勉强可以接受,所以如果不是要求多高的话,还是可以用这个库玩一下的。
你可以重复着初恋
却不能重复热情
你可以重复那些后悔
却重复不了 最爱
--旖旎 《永远的夏娃·断章》
SeetaFaceEngine系列3:Face Identification编译和使用的更多相关文章
- SeetaFaceEngine系列1:Face Detection编译和使用
SeetaFace,根据GitHub上的介绍,就是一个开源的人脸检测.矫正和识别的开源库,是采用C++来编写的,并且是在CPU上执行的,没有用到GPU,但是可以用SSE或者OpenMP来加速.整个库分 ...
- SeetaFaceEngine系列2:Face Alignment编译和使用
前面一篇写了编译人脸检测部分,现在就介绍下人脸配准部分,SeetaFace的Face Alignment通过人脸的五个关键点来配准人脸,也就是双眼.鼻尖.两个嘴角. 这部分的编译也和上一篇一样,步骤如 ...
- Linux Kernel系列三:Kernel编译和链接中的linker script语法详解
先要讲讲这个问题是怎么来的.(咱们在分析一个技术的时候,先要考虑它是想解决什么问题,或者学习新知识的时候,要清楚这个知识的目的是什么). 我在编译内核的时候,发现arch/arm/kernel目录下有 ...
- spring源代码系列(一)sring源代码编译 spring源代码下载 spring源代码阅读
想对spring框架进行深入的学习一下,看看源码,提升和沉淀下自己,工欲善其事必先利其器,还是先搭建好开发环境吧. 环境搭建 sping源代码之前是svn管理,如今已经迁移到了github中了.新版本 ...
- [ffmpeg 扩展第三方库编译系列] 关于libopenjpeg mingw32编译问题
在mingw32如果想编译libopenjpeg 会比较麻烦 会出现undefined reference to `_imp__opj_destroy_cstr_info@4' 等错误 因此编译时候需 ...
- [ffmpeg 扩展第三方库编译系列] 关于libvpx mingw32编译问题
在编译libvpx的时候遇到挺多的问题, 1.[STRIP] libvpx.a < libvpx_g.a strip: Bad file number 这个错误也是比较难搞的,一开始以为只是 ...
- [ffmpeg 扩展第三方库编译系列] frei0r mingw32 下编译问题
在编译安装frei0r的时候遇到两个错误地方, 两个都是在install的时候. 一开始编译都很顺利,输入了 make install之后就走开了,回来一看,报错误. 提示mkdir -p //usr ...
- [ffmpeg 扩展第三方库编译系列] 关于 mingw32 下编译libcaca
在编译前最好先看一下帮助 ./configure --help 开始编译 ./configure --disable-shared --disable-cxx \ --disable-csharp ...
- 初识google多语言通信框架gRPC系列(二)编译gRPC
目录 一.概述 二.编译gRPC 三.C#中使用gRPC 四.C++中使用gRPC 无论通过哪种语言调用gRPC,都必须要编译gRPC,因为生成proto访问类时,除了产生标准的数据定义类之外,还需要 ...
随机推荐
- 配置tomcat、nginx实现反向代理(需操作)
配置tomcat.nginx实现反向代理现在我想通过nginx访问tomcat 这就要我们去修改nginx的核心配置文件,在其目录下的conf文件夹下的nginx.conf文件,那么首先我们就要了解该 ...
- windows下移植别人配置好的python环境
一般来说,我们在windows下配置python环境的时候可能会比较推荐用anaconda,那么有一个比较方便的anaconda环境移植方法,也就是说,如果我已经在windows上安装好了anacon ...
- 【STM32H7教程】第52章 STM32H7的LTDC应用之点阵字体和字符编码(重要)
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第52章 STM32H7的LTDC应用之点阵字体和 ...
- Oracle之SQL优化专题03-如何看懂SQL的执行计划
专题第一篇<Oracle之SQL优化专题01-查看SQL执行计划的方法>讲到了查看SQL执行计划的方法,并介绍了各种方法的应用场景,那么这一篇就主要介绍下如何看懂SQL的执行计划.毕竟如果 ...
- 七十九、SAP中数据库操作之更新数据,UPDATE的用法
一.我们查看SFLIGHT数据库,比如我们需要改这条数据 二.代码如下 三.执行效果如下,显示“数据更新成功” 四.我们来看一下SFLIGHT数据库,发现已经由DEM更改为了AAA了
- ZOJ 3795 Grouping 强连通分量-tarjan
一开始我还天真的一遍DFS求出最长链以为就可以了 不过发现存在有向环,即强连通分量SCC,有向环里的每个点都是可比的,都要分别给个集合才行,最后应该把这些强连通分量缩成一个点,最后保证图里是 有向无环 ...
- HTMLCSS学习
子选择器:第一代 .food>li{border:1px solid red;} 后代选择器:所有后代 .first span{color:red;} 通用选择器: ...
- 一、VIP课程:互联网工程专题 05-快速掌握Jenkins原理与核心功能
第五课:快速掌握jenkins核心功能.docx 2.164 (2019-02) and newer: Java 8 or Java 11 一.jenkins 概述与环境配置 知识点: 关于可持续化集 ...
- mysql安装--window版
一.下载 二.解压 三.配置 四.环境变量 五.安装MySQL服务 六.启动MySQL服务 七.停止MySQL 一.下载 第一步:打开网址,https://www.mysql.com,点击downlo ...
- Mac使用安卓模拟器-网易MuMu
先看下效果图 近期,因为小编把安卓手机倒手了,但现在还想看看一些安卓应用.所以就搜罗了很多市场上的模拟器. 最终选定了网易的MuMu,总体感觉网易也是花了很大的心思,整体效果超赞. 下载地址 网易Mu ...