\(\underline{Def:}\)A topology space
\(\mathcal{X}=(\underline{X},\eth_{x})\)consists of a set \(\underline{X}\),called the underlying space of \(\mathcal{X}\) ,and a family \(\eth_{x}\)of subsets of \(\mathcal{X}\)(ie.\(\eth_{x}\subset P(\underline{X})\))
\(P(\underline{X})\)means the power set of \(\underline{X}\)
s.t.:(1):\(\underline{X}\) and \(\varnothing \in \eth_{x}\)
(2):\(U_{\alpha}\in \eth_{x}(\alpha \in A) \Rightarrow\)
\(\cup_{\alpha \in A}U_{\alpha} \in \eth_{x}\)
(3).\(U,U^{\prime}\in \eth_{x} \Rightarrow U \cap U^{\prime} \in \eth_{x}\)
\(\eth_{x}\) is called a topology(topological structure) on \(\underline{X}\)
\(\underline{Convention:}\)We usually use \(\mathcal{X}\) to indicate the set \(\underline{X}\)and omit the subscript \(x\) in \(\eth_{x}\) by saying "a topological space\((X,\eth)\)"
\(\underline{Examples:}\)(1)metric space:
\((X,d) \looparrowright(X,\eth_{d})\)(open sets induced by d)
\(\bullet\)Different distance funcs might determine the same topology

topological space的更多相关文章

  1. Metaphor of quotient space

    In James Munkres "Topology" Section 22, the quotient space is defined as below. Definition ...

  2. Metric space,open set

    目录 引入:绝对值 度量空间 Example: 开集,闭集 引入:绝对值 distance\(:|a-b|\) properties\(:(1)|x| \geq 0\),for all \(x \in ...

  3. [zz] Pixar’s OpenSubdiv V2: A detailed look

    http://www.fxguide.com/featured/pixars-opensubdiv-v2-a-detailed-look/ Pixar’s OpenSubdiv V2: A detai ...

  4. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

  5. Continuity of arithmetic operations

    Arithmetic operations taught in elementary schools are continuous in the high level topological poin ...

  6. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  7. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  8. Concept of function continuity in topology

    Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...

  9. Tychonov Theorem

    (Remark: The proof presented in this post is a reorganization and interpretation of that given by Ja ...

随机推荐

  1. react 16 性能提升 总结

    1. 减少子组件渲染 当 父组件 state 内的某个值(eg:value) 不变时 子组件菜 render shouldComponentUpdate(nextProps, nextState){ ...

  2. Windbg 实践之结合条件断点

    Case 1 1.bu USER32!PostMessageW "r $t0=@$t0+1;.printf\"PostMessageW Call Count:%d\",@ ...

  3. Vue-router(4)之路由跳转

    路由传参 案例:现在需要展示一个电影列表页,点击每一部电影,会跳转到该部电影详情页(跳转时携带type和id) 代码实现(未携带type): index.js import Vue from 'vue ...

  4. keras_yolo3阅读

    源码地址 https://github.com/qqwweee/keras-yolo3 春节期间仔细看了看yolov3的kears源码,这个源码毕竟不是作者写的,有点寒酸,可能大道至简也是这么个理.我 ...

  5. IO流的学习以及统计次数最多的单词

    IO流: 处理数据类型:字节流(InputStream  OutputStream)和字节流(Reader  Writer) 数据流向不同:输入流和输出流(FileInputStream   File ...

  6. 拷贝构造函数[c++]

    拷贝构造函数何时会被调用? 1. 对象以值传递的方式传入函数参数 2.对象以值传递的方式从函数返回 3.对象需要通过另外一个对象进行初始化 下面我们来看代码: //#include <iostr ...

  7. 89.QuerySet API常用方法使用详解:count,first,last,aggregate,exists

    1.count():计算数据的个数. 计算数据的个数可以使用count,在python中使用len()也可以计算数据的个数,但是相对来说效率没有使用count()效率高,因为在底层是使用select ...

  8. Python 模拟 Base64编码

    Base64编码原理:https://blog.csdn.net/wo541075754/article/details/81734770 def Enbs64(s): # 编码后的结果 result ...

  9. PHP学习之-文件上传

    一.PHP文件上传 HTML部分 <form action="file_big.php" method="post" enctype="mult ...

  10. springCloud 常用组件总结

    本文浅谈只是对我自己初期认识这spring cloud的一个笔记. 微服务是一种架构风格和一种应对业务的架构策略.实现这种的技术方式很多.本文主要说spring cloud. spring cloud ...