topological space
\(\underline{Def:}\)A topology space
\(\mathcal{X}=(\underline{X},\eth_{x})\)consists of a set \(\underline{X}\),called the underlying space of \(\mathcal{X}\) ,and a family \(\eth_{x}\)of subsets of \(\mathcal{X}\)(ie.\(\eth_{x}\subset P(\underline{X})\))
\(P(\underline{X})\)means the power set of \(\underline{X}\)
s.t.:(1):\(\underline{X}\) and \(\varnothing \in \eth_{x}\)
(2):\(U_{\alpha}\in \eth_{x}(\alpha \in A) \Rightarrow\)
\(\cup_{\alpha \in A}U_{\alpha} \in \eth_{x}\)
(3).\(U,U^{\prime}\in \eth_{x} \Rightarrow U \cap U^{\prime} \in \eth_{x}\)
\(\eth_{x}\) is called a topology(topological structure) on \(\underline{X}\)
\(\underline{Convention:}\)We usually use \(\mathcal{X}\) to indicate the set \(\underline{X}\)and omit the subscript \(x\) in \(\eth_{x}\) by saying "a topological space\((X,\eth)\)"
\(\underline{Examples:}\)(1)metric space:
\((X,d) \looparrowright(X,\eth_{d})\)(open sets induced by d)
\(\bullet\)Different distance funcs might determine the same topology
topological space的更多相关文章
- Metaphor of quotient space
In James Munkres "Topology" Section 22, the quotient space is defined as below. Definition ...
- Metric space,open set
目录 引入:绝对值 度量空间 Example: 开集,闭集 引入:绝对值 distance\(:|a-b|\) properties\(:(1)|x| \geq 0\),for all \(x \in ...
- [zz] Pixar’s OpenSubdiv V2: A detailed look
http://www.fxguide.com/featured/pixars-opensubdiv-v2-a-detailed-look/ Pixar’s OpenSubdiv V2: A detai ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
- Continuity of arithmetic operations
Arithmetic operations taught in elementary schools are continuous in the high level topological poin ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- Concept of function continuity in topology
Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...
- Tychonov Theorem
(Remark: The proof presented in this post is a reorganization and interpretation of that given by Ja ...
随机推荐
- react 16 性能提升 总结
1. 减少子组件渲染 当 父组件 state 内的某个值(eg:value) 不变时 子组件菜 render shouldComponentUpdate(nextProps, nextState){ ...
- Windbg 实践之结合条件断点
Case 1 1.bu USER32!PostMessageW "r $t0=@$t0+1;.printf\"PostMessageW Call Count:%d\",@ ...
- Vue-router(4)之路由跳转
路由传参 案例:现在需要展示一个电影列表页,点击每一部电影,会跳转到该部电影详情页(跳转时携带type和id) 代码实现(未携带type): index.js import Vue from 'vue ...
- keras_yolo3阅读
源码地址 https://github.com/qqwweee/keras-yolo3 春节期间仔细看了看yolov3的kears源码,这个源码毕竟不是作者写的,有点寒酸,可能大道至简也是这么个理.我 ...
- IO流的学习以及统计次数最多的单词
IO流: 处理数据类型:字节流(InputStream OutputStream)和字节流(Reader Writer) 数据流向不同:输入流和输出流(FileInputStream File ...
- 拷贝构造函数[c++]
拷贝构造函数何时会被调用? 1. 对象以值传递的方式传入函数参数 2.对象以值传递的方式从函数返回 3.对象需要通过另外一个对象进行初始化 下面我们来看代码: //#include <iostr ...
- 89.QuerySet API常用方法使用详解:count,first,last,aggregate,exists
1.count():计算数据的个数. 计算数据的个数可以使用count,在python中使用len()也可以计算数据的个数,但是相对来说效率没有使用count()效率高,因为在底层是使用select ...
- Python 模拟 Base64编码
Base64编码原理:https://blog.csdn.net/wo541075754/article/details/81734770 def Enbs64(s): # 编码后的结果 result ...
- PHP学习之-文件上传
一.PHP文件上传 HTML部分 <form action="file_big.php" method="post" enctype="mult ...
- springCloud 常用组件总结
本文浅谈只是对我自己初期认识这spring cloud的一个笔记. 微服务是一种架构风格和一种应对业务的架构策略.实现这种的技术方式很多.本文主要说spring cloud. spring cloud ...