洛谷 P1438 无聊的数列 题解
首先,我们考虑用差分解决问题。
用 \(x_i\) 表示原数列,\(a_i = x_i - x_{i-1}\)
那么,先普及一下差分:
如果我们只需要维护区间加值,单点求值的话,你会发现两个重要等式:
\]
\]
我们每次修改 \(l,r\) 区间增加 \(k\) 的话,你会发现:
则 \(l+1,r\) 这一段,所有的 \(a_i\) 都是不变的。这是因为:
\]
那么对于 \(a_l\) 这个点,显然:
\]
对于 \(a_{r+1}\) 这个点,显然:
\]
这是正常的差分。
可是,我们现在加上了一个 等差数列 。由于等差数列的性质,显然每个点加上的值比前一个点多 \(d\).
所以, \(l+1 , r\) 这一段, \(a_i \gets a_i + d\) .
那么对于 \(a_l\) 这个点:
\]
对于 \(a_{r+1}\) 这个点:
\]
下面我们考虑单点查询。
\]
显然,我们用 线段树 维护 \(x\) 数组的区间修改和区间求和。
时间复杂度: \(O(n \log n + m \log n)\).
空间复杂度: \(O(n)\).
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+1;
#define L (i<<1)
#define R i<<1|1
inline ll read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
ll x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}
struct tree{
int l,r; ll tag;
ll sumi;
};
tree t[4*N];
int n,m,x[N]; //原数组
ll a[N]; //差分后的数组
inline void update(int i) {
t[i].sumi=t[L].sumi+t[R].sumi;
} //更新
inline void pass(int i,ll x) {
t[i].tag+=x;
t[i].sumi+=x*(t[i].r-t[i].l+1);
}
inline void pushdown(int i) {
pass(L,t[i].tag);
pass(R,t[i].tag);
t[i].tag=0;
} //下传标记
inline void build_tree(int i,int l,int r) {
t[i].l=l; t[i].r=r;
if(l==r) {
t[i].sumi=a[l]; t[i].tag=0;
return;
} int mid=(l+r)>>1;
build_tree(L,l,mid);
build_tree(R,mid+1,r);
update(i);
} //建树
inline ll query(int i,int l,int r) {
if(l<=t[i].l && t[i].r<=r) return t[i].sumi;
int mid=(t[i].l+t[i].r)>>1; ll ans=0;
pushdown(i);
if(l<=mid) ans+=query(L,l,r);
if(r>mid) ans+=query(R,l,r);
return ans;
} //询问
inline void change(int i,int l,int r,int x) {
if(l<=t[i].l && t[i].r<=r) {
t[i].sumi+=x*(t[i].r-t[i].l+1);
t[i].tag+=x; return ;
} pushdown(i);
int mid=(t[i].l+t[i].r)>>1;
if(l<=mid) change(L,l,r,x);
if(r>mid) change(R,l,r,x);
update(i);
} //修改
int main(){
n=read(),m=read();
for(int i=1;i<=n;i++) x[i]=read();
for(int i=1;i<=n;i++) a[i]=ll(x[i]-x[i-1]);
// for(int i=1;i<=n;i++) printf("%d ",a[i]);
// putchar('\n');
build_tree(1,1,n);
while(m--) {
int opt=read();
ll l,r,k,d;
if(opt==1) {
l=read(),r=read(),k=read(),d=read();
change(1,l,l,k);
if(r>l) change(1,l+1,r,d);
if(r-n) change(1,r+1,r+1,-(k+(r-l)*d));
//维护
} else printf("%lld\n",query(1,1,read()));
}
return 0;
}
洛谷 P1438 无聊的数列 题解的更多相关文章
- 洛谷P1438 无聊的数列 [zkw线段树]
题目传送门 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]} ...
- 洛谷 P1438 无聊的数列
题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]},支持两种操作: 1.1 ...
- [洛谷P1438] 无聊的数列
题目类型:差分,线段树 传送门:>Here< 题意:给出一个数列,每次给一个区间对应的加上一个等差数列,并询问某一个元素目前的值. 解题思路 所谓差分,我个人的理解就是用\(O(1)\)的 ...
- 洛谷P1438 无聊的数列 (线段树+差分)
变了个花样,在l~r区间加上一个等差数列,等差数列的显著特点就是公差d,我们容易想到用线段树维护差分数组,在l位置加上k,在l+1~r位置加上d,最后在r+1位置减去k+(l-r)*d,这样就是在差分 ...
- Luogu P1438无聊的数列
洛谷 P1438无聊的数列 题目链接 点这里! 题目描述 维护一个数列\(a_i\),支持两种操作: 给出一个长度等于 \(r-l+1\)的等差数列,首项为\(k\) 公差为\(d\) 并将它对应加到 ...
- 洛谷P1783 海滩防御 分析+题解代码
洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...
- P1438 无聊的数列 (差分+线段树)
题目 P1438 无聊的数列 解析: 先考虑修改,用差分的基本思想,左端点加上首项\(k\),修改区间\((l,r]\)内每个数的差分数组都加上公差\(d\),最后的\(r+1\)再减去\(k+(r- ...
- P1438 无聊的数列
P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...
- [luogu P1438] 无聊的数列
[luogu P1438] 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个 ...
随机推荐
- 添砖加瓦:snappy无损压缩算法
一.简介 Snappy(旧称:Zippy)是Google基于LZ77的思路用C++语言编写的快速数据压缩与解压程序库,并在2011年开源.其目标并非最大压缩率或与其他压缩程序的兼容性,而是非常高的速度 ...
- Gradle的依赖方式——Lombok在Gradle中的正确配置姿势
写过java的都知道,lombok几乎在项目中处于不可或缺的一部分,但是lombok在Gradle的项目中配置并非人人都知道. 很多人在项目依赖中直接这样写 1 compile "org.p ...
- C++与引用2
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- css雪碧图压缩
cssgaga下载地址 链接: https://pan.baidu.com/s/1Q9xH_XzumIc7vTLCZ3tr5A 提取码: stqe CssGaga功能特性 合并import的CSS文件 ...
- AAAI 2020论文分享:通过识别和翻译交互打造更优的语音翻译模型
2月初,AAAI 2020在美国纽约拉开了帷幕.本届大会百度共有28篇论文被收录.本文将对其中的机器翻译领域入选论文<Synchronous Speech Recognition and Spe ...
- percona-toolkit 之 【pt-query-digest】介绍
背景: 做为一个MySQL DBA,分析慢查询是日常主要的工作之一,之前一直使用mysqlsla作为分析慢查询的, 因为简单并且也能满足自己对慢查询分析的要求,对于另一个工具pt-query-dige ...
- 什么是x86什么是x64 它们有什么区别
1.内存寻址不同: 32位系统,最大支持3.5G内存,如果在32位系统中使用4G或更大的内存,电脑最多只可以识别3.4G左右可用,而64位系统最大可以支持128G大内存. 2.运算速度不同: 64位系 ...
- 如何用Postman做接口自动化测试
目录 前言 什么是自动化测试 自动测试测试分类 为什么需要自动化测试 Postman自动化测试演示 1.新建集合 2.新建接口 3.填写自动化测试脚本 4.录入所有接口 5.执行自动化测试 前言 什么 ...
- jdbc Template 存储过程 返回多个结果 ,out 输出参数
public ReportVo getReport() { //执行存储过程 ReportVo reportVo=jdbcTemplate.execute(new CallableStatementC ...
- C#版免费离线人脸识别——虹软ArcSoft V3.0
[温馨提示] 本文共678字(不含代码),8张图.预计阅读时间需要6分钟. 1. 前言 人脸识别&比对发展到今天,已经是一个非常成熟的技术了,而且应用在生活的方方面面,比如手机.车站.天网等. ...