题目链接

题意

给出一棵 n 个点的树, 求它的所有非空诱导子图的独立集种类数之和, 对 998244353 取模. n ≤ 3e5.

题解

不妨假设在独立集中的点被染色成 1, 其余不染色; 由于不在诱导子图中的点不影响答案, 不妨也考虑进来, 也不染色. 问题转化为: 对这棵树的部分节点染色, 然后进行删边, 保证删边后没有相邻的点同时被染色, 并且不能有孤立的被染色的点存在, 问结果的情况种类数.

问题转化后就可以进行树 dp 了. 定义以 x 为根的子树在以下情况的方案数

  • \(dp[x][0]: 点 x 不染色\)
  • \(dp[x][1]: 点 x 染色\)
  • \(dp[x][2]: 点 x 染色 且其与儿子的边都删去(非法情况)\)

分类讨论儿子的染色情况和删边与否, 得到转态转移方程

  • \(dp[x][0] = \prod {dp[son][0] * 2 + dp[son][1] * 2 - dp[son][2]}\)
  • \(dp[x][1] = \prod {dp[son][0] * 2 + dp[son][1] - dp[son][2]}\)
  • \(dp[x][2] = \prod {dp[son][0] + dp[son][1] - dp[son][2]}\)

注意题目要求诱导子图是非空的, 所以最后答案要减 1, 这对应问题转化后所有边都删去的情况.

代码

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inc(i, l, r) for (int i = l; i <= r; i++) const int maxn = 1e6 + 5;
const int mod = 998244353; ll dp[maxn][3];
int n, u, v;
vector<int> g[maxn]; void dfs(int x, int par) {
inc(i, 0, 2) dp[x][i] = 1;
for (int son : g[x]) {
if (son != par) {
dfs(son, x);
dp[x][0] =
dp[x][0] *
((dp[son][0] * 2 + dp[son][1] * 2 - dp[son][2] + mod) % mod) %
mod;
dp[x][1] =
dp[x][1] *
((dp[son][0] * 2 + dp[son][1] - dp[son][2] + mod) % mod) % mod;
dp[x][2] = dp[x][2] *
((dp[son][0] + dp[son][1] - dp[son][2] + mod) % mod) %
mod;
}
}
} int main() {
cin >> n;
inc(i, 1, n - 1) {
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
dfs(1, -1);
cout << (dp[1][0] + dp[1][1] - dp[1][2] - 1 + mod) % mod << "\n";
}

Codeforces 1332F - Independent Set(树dp)的更多相关文章

  1. Codeforces 543D. Road Improvement (树dp + 乘法逆元)

    题目链接:http://codeforces.com/contest/543/problem/D 给你一棵树,初始所有的边都是坏的,要你修复若干边.指定一个root,所有的点到root最多只有一个坏边 ...

  2. Palindrome Partition CodeForces - 932G 回文树+DP+(回文后缀的等差性质)

    题意: 给出一个长度为偶数的字符串S,要求把S分成k部分,其中k为任意偶数,设为a[1..k],且满足对于任意的i,有a[i]=a[k-i+1].问划分的方案数. n<=1000000 题解: ...

  3. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  4. (纪念第一道完全自己想的树DP)CodeForces 219D Choosing Capital for Treeland

    Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes inpu ...

  5. CF456D A Lot of Games (字典树+DP)

    D - A Lot of Games CF#260 Div2 D题 CF#260 Div1 B题 Codeforces Round #260 CF455B D. A Lot of Games time ...

  6. 边双连通缩点+树dp 2015 ACM Arabella Collegiate Programming Contest的Gym - 100676H

    http://codeforces.com/gym/100676/attachments 题目大意: 有n个城市,有m条路,每条路都有边长,如果某几个城市的路能组成一个环,那么在环中的这些城市就有传送 ...

  7. Manthan, Codefest 16 C. Spy Syndrome 2 字典树 + dp

    C. Spy Syndrome 2 题目连接: http://www.codeforces.com/contest/633/problem/C Description After observing ...

  8. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  9. CodeForces #369 C. Coloring Trees DP

    题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少.   K:连续的颜色为一组 ...

随机推荐

  1. mysql中用SQL增加、删除字段,修改字段名

    CREATE TABLE `tuser` ( `id` int(11) NOT NULL, `name` varchar(32) DEFAULT NULL, PRIMARY KEY (`id`) ) ...

  2. js面试-手写代码实现new操作符的功能

    我们要搞清楚new操作符到底做了一些什么事情? 1.创建一个新的对象 2.将构造函数的作用域赋给新对象(因此this指向了这个新对象) 3.执行构造函数中的代码(为这个新对象添加属性) 4.返回新对象 ...

  3. Java Web环境配置

    准备工作 jdk-8u241 apache-tomcat-9.0.31-windows-x64.zip Eclipse IDE for Enterprise Java Developers 关于版本选 ...

  4. C++编码规范(转)

    转载链接:https://www.jianshu.com/p/b262d76902e4 一.命名规范 1.通则 1).所有命名都应使用标准的英文单词或缩写,不得使用拼音或拼音缩写,除非该名字描述的是中 ...

  5. hadoop之完全分布式集群配置(centos7)

    一.基础环境 现在我们有两台虚拟机了,再克隆两台: 克隆好之后需要做三件事:1.更改主机名称 2.修改ip地址 3.将ip地址和对应的主机号加入到/etc/hosts文件中 1.永久修改主机名 hos ...

  6. Java实现生产者消费者(一)

    问题描述:生产者和消费者问题是线程模型中的经典问题:生产者和消费者在同一时间段内共用同一个存储空间,生产者往存储空间中添加产品,消费者从存储空间中取走产品,当存储空间为空时,消费者阻塞,当存储空间满时 ...

  7. 前端解决跨域问题的终极武器——Nginx反向代理

    提到代理,分为:正向代理和反向代理. 正向代理:就是你访问不了Google,但是国外有个VPN可以访问Google,你访问VPN后叫它访问Google,然后把数据传给你. 正向代理隐藏了真实的客户端. ...

  8. redis如何在spring里面的bean配置

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  9. Linux apache让网页编码错误

    今天帮一个小伙伴搞作业,遇到安装discuz乱码问题,就顺便在这里写一下,以供其他同学纠正. 开apache配置文件/etc/httpd/conf/httpd.conf 查找AddDefaultCha ...

  10. SpiningUP 强化学习 中文文档

    2020 OpenAI 全面拥抱PyTorch,  全新版强化学习教程已发布. 全网第一个中文译本新鲜出炉:http://studyai.com/course/detail/ba8e572a 个人认为 ...