题目链接:https://www.luogu.org/problem/show?pid=1437#sub

     http://codevs.cn/problem/1257/

不得不说,这个题非常的恶心,在初次拿到题后我的思路是暴力,思索之后我还是只有暴力,想到最后我还是暴力,当然暴力的方法就是智者见智的了;

在看了题解的思路后,我尝试着去打着到题,结果,完美WA掉。。。然后我就WA了接近一周时间,最后浏览了各种博客才勉强A了这道恶心的dp

很多大佬的博客对于这道题的解法都是要转90度然后才定义dp,说实话,我觉得那种方法略偏麻烦,完全可以不处理原图直接dp

对于这道题,第一件事就是要怎么去看这张图

14   15   4   3   23

    33   33   76   2

    2   13   11

      22   23

        31

这是题干里的图,当然在看这张图的时候,要稍微换个方式

14  15  4    3  23

33  33  76  2

2    13  11

22  23

31

这张图有没有很熟悉,想起了啥???我反正是想起了dp入门题里面一道类似的三角形的题,不过图倒过来了

当然就算想起来了也没有大用处,因为这不是重点。

把图变成这样主要是为了方便分析滴

我们来定义一个数组吧:(这才是重点)

定义数组dp[i][j][k]表示第i列第j块砖时已经一共取了k块砖  (也可以理解为,第i列取了j块砖且一共去了k块砖)

好了定义出来了我相信这个方程其实也很容易搞出来了,要注意的是我们要从第n列往回找,不要问我为啥,因为不这样找,你的dp数组就会有些地方没有值

动态转移方程

----------------------------------------------------------------------------------------------------------------------------------

--                                                    --

--dp[i][j][k]=max(dp[ i ][ j ][ k ],dp[ i+1 ][ v ][ k-j ]+sum[ j ][ i ]); --

--                                                    -- 

----------------------------------------------------------------------------------------------------------------------------------

然后我就来解释一下这个动态转移方程

*dp[i+1][v][k-j]中,v是从j-1到m,因为在第i列取了j个砖头,所以第i+1列至少要去j-1个(通过题中条件,取第i,j块必须先取i-1, j+1和i-1,j)

然后在第i列是一共取k个,所以第i+1列肯定是一共取了k-j个

*sum[j][i]是表示从a[1][i]到a[j][i]的值的和。因为你取第i列第j块,肯定是在第i列上要把前j个取完的

把这些个一想通,这题就明了了,一个预处理sum[][],在来个4重循环跑个dp数组就完了

唯一还值得注意就是ans是可能存在dp数组的任何位置,所以一边动态转移,一边要比较ans

题不难,就看细心了

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cmath>
#define maxn 55
#define maxm 1300
using namespace std; int n,m,ans;
int f[maxn][maxn][maxm];
int val[maxn][maxn]; int main()
{
scanf("%d%d",&n,&m);
memset(f,-,sizeof(f));
for(int i=;i<=n;i++)
{
for(int j=;j<=n-i+;j++)
{
scanf("%d",&val[i][j]);
val[i][j]+=val[i-][j];
}
}
f[n][][]=val[][n];
for(int i=n-;i>=;i--)
for(int j=;j<=n-i+;j++)
for(int k=j;k<=min(m,(n-i+)*(n-i+)/);k++)
//第i列的时候,最多取了p*(p+1)/2块砖头 p=n-i+1
{
for(int v=max(j-,);v<=n-i;v++)//i+1列最多就n-i块砖
{
if(f[i+][v][k-j]!=-&&f[i+][v][k-j]+val[j][i]>f[i][j][k])
f[i][j][k]=f[i+][v][k-j]+val[j][i];
}
ans=max(ans,f[i][j][k]);
}
printf("%d",ans);
}

[洛谷1437&Codevs1257]敲砖块<恶心的dp>的更多相关文章

  1. 洛谷 P1437 [HNOI2004]敲砖块 解题报告

    P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...

  2. 洛谷P1437 [HNOI2004]敲砖块(dp)

    题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...

  3. yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块

    题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...

  4. 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)

    传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...

  5. Luogu 1437 [HNOI2004]敲砖块 (动态规划)

    Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...

  6. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  7. 洛谷 P7163 - [COCI2020-2021#2] Svjetlo(树形 dp)

    洛谷题面传送门 神仙级别的树形 dp. u1s1 这种代码很短但巨难理解的题简直是我的梦魇 首先这种题目一看就非常可以 DP 的样子,但直接一维状态的 DP 显然无法表示所有情况.注意到对于这类统计一 ...

  8. 洛谷CF809C Find a car(数位DP)

    洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...

  9. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

随机推荐

  1. electron+vue制作桌面应用--自定义标题栏

    electron会默认显示边框和标题栏,如下图 我们来看一下如何自定义一个更加有(gao)意(da)思(shang)的标题栏,例如网易云音乐这种 首先我们要把默认的标题栏删掉,找到主进程中创建窗体部分 ...

  2. Web 认证配置流程

    AC配置 Radius配置 Portal配置

  3. H5开发移动应用APP(店铺系列一)

    首先,这是个真实的案例,我大兄弟在深圳开汽修店铺,但需要系统来管理日常经营活动,这正不是我擅长的吗? 说干就干,直接后端+web端+移动端来一套,于是紧急赶工,起早摸黑,产出约3万行总量代码,此系统与 ...

  4. 盘点Linux运维常用工具(一)-web篇之httpd

    #前言:想把自己学的各种服务进行分类归档起来,于是就写了盘点Linux运维常用工具,Linux方面使用到的web应用服务有httpd(apache).nginx.tomcat.lighttpd,先了解 ...

  5. 解决IOS下window.open页面打不开问题

    问题如标题所写,在ajax回调里面拿到即将要跳转的链接url,使用window.open(linkUrl),没有起作用,而且代码也没有报错,查找原因是:大部分现代的浏览器(Chome/Firefox/ ...

  6. linux命令行界面如何安装图形化界面

    linux命令行界面如何安装图形化界面 目录 问题描述 解决方案 安装包 测试是否安装成功 如何卸载图形化界面 遭遇问题 问题描述 当我们在安装Linux系统时,我们一开始可能安装的是非图形界面的系统 ...

  7. JS中的reduce()详解

    reduce()作为一个循环使用.接收四个参数:初始值(上一次返回值),当前元素值,当前元素下标,原数组. 应用  作为累加器使用 var a=[4,5,6,7,8] //item代表一次回调的值 初 ...

  8. 建议14:灵活使用Arguments

    Javascript支持Arguments机制.Arguments是一个为数组,可以通过数组下标形式获取该集合中传递给函数的参数值.例如:下面函数中,没有指定形参,但在函数体内通过Arguments对 ...

  9. Python基础篇(一)_基本语法元素

    Python基础篇——基本语法元素 缩进:体现强制可读性,一般缩进4个空格.一个或多个Tab 注释:单行注释----以 # 开头 多行注释----每行以 # 开头,以 # 结束 变量:无须提前声明.可 ...

  10. EPX Studio开发平台简介

    大家问我最多的问题就是“EPX 是什么?”“EPX 能够用来做什么?”“EPX 有什么优势?”“EPX 与其它开发平台的区别是什么?” 问题林林总总,总也回答不完,希望通过正文前面的这段文字,来简要回 ...