Cloudera Manager介绍

    Cloudera Manager(简称CM)是Cloudera公司开发的一款大数据集群安装部署利器,这款利器具有集群自动化安装、中心化管理、集群监控、报警等功能,使得安装集群从几天的时间缩短在几小时以内,运维人员从数十人降低到几人以内,极大的提高集群管理的效率。

CM技术架构

  Agent:安装在每台主机上。该代理负责启动和停止的过程,拆包配置,触发装置和监控主机。
  Management Service:由一组执行各种监控,警报和报告功能角色的服务。
  Database:存储配置和监视信息。通常情况下,多个逻辑数据库在一个或多个数据库服务器上运行。例如,Cloudera的管理服务器和监控角色使用不同的逻辑数据库。
  Cloudera Repository:软件由Cloudera 管理分布存储库。
  Clients:是用于与服务器进行交互的接口:
  Admin Console :基于Web的用户界面与管理员管理集群和Cloudera管理。
  API :与开发人员创建自定义的Cloudera Manager应用程序的API。

CM四大功能

  管理:对集群进行管理,如添加、删除节点等操作。
  监控:监控集群的健康情况,对设置的各种指标和系统运行情况进行全面监控。
  诊断:对集群出现的问题进行诊断,对出现的问题给出建议解决方案。
  集成:对hadoop的多组件进行整合。

需要安装的组件

Cloudera Manager

CDH

JDK

Mysql(主节点)  + JDBC

需要注意的是CDH的版本需要等于或者小于CM的版本

相关的设置

主机名和hosts文件

关闭防火墙

ssh无密码登陆

配置NTP服务

关闭SElinux状态

配置集群

配置数据库

一些安装过程

主节点安装cloudera manager

把我们下载好的cloudera-manager-*.tar.gz包和mysql驱动包mysql-connector-java-*-bin.jar放到主节点cm0的/opt中。

Cloudera Manager建立数据库 

使用命令 cp mysql-connector-java-5.1.40-bin.jar   /opt/cm-5.8.2/share/cmf/lib/ 把mysql-connector-java-5.1.40-bin.jar放到/opt/cm-5.8.2/share/cmf/lib/中。

使用命令 /opt/cm-5.8.2/share/cmf/schema/scm_prepare_database.sh mysql cm  -h cm0  -u  root  -p  123456  --scm-host  cm0  scm scm scm  在主节点初始化CM5的数据库。

实际位置:/usr/share/cmf/schema/scm_prepare_database.sh

Agent配置 

使用命令 vim  /opt/cm-5.8.2/etc/cloudera-scm-agent/config.ini 主节点修改agent配置文件。

在主节点cm0用命令 scp -r   /opt/cm-5.8.2     root@cm1:/opt/ 同步Agent到其他所有节点。

实际位置:/etc/cloudera-scm-agent/config.ini

在所有节点创建cloudera-scm用户

使用命令 useradd --system --home=/opt/cm-5.8.2/run/cloudera-scm-server/  --no-create-home  --shell=/bin/false --comment "Cloudera SCM User" cloudera-scm

启动cm和agent 

主节点cm0通过命令 /opt/cm-5.8.2/etc/init.d/cloudera-scm-server start 启动服务端。

所有节点通过命令 /opt/cm-5.8.2/etc/init.d/cloudera-scm-agent start 启动Agent服务。(所有节点都要启动Agent服务,包括服务端)

Cloudera Manager Server和Agent都启动以后,就可以进行尝试访问了。http://master:7180/cmf/login

实际位置:/etc/rc.d/init.d/cloudera-scm-server 和 /etc/rc.d/init.d/cloudera-scm-agent

补充:/etc/init.d 是 /etc/rc.d/init.d 的软链接(soft link)。/etc/init.d里的shell脚本能够响应start,stop,restart,reload命令来管理某个具体的应用。比如经常看到的命令: /etc/init.d/networking start 这些脚本也可被其他trigger直接激活执行,这些trigger被软连接在/etc/rcN.d/中。这些原理似乎可以用来写daemon程序,让某些程序在开关机时运行。

CDH的安装和集群配置

新建目录为 /opt/cloudera/parcel-repo ,把之前下载的安装文件放到主节点的这个目录下。

安装parcel,安装过程中有什么问题,可以用 /opt/cm-5.8.2/etc/init.d/cloudera-scm-agent status , /opt/cm-5.8.2/etc/init.d/cloudera-scm-server status 查看服务器客户端状态。

也可以通过 /var/log/cloudera-scm-server/cloudera-scm-server.log , /var/log/cloudera-scm-agent/cloudera-scm-agent.log 查看日志。

如果上面的路径找不到则在日志文件夹"/opt/cm-5.8.2/log"查看日志,里面包含server和agent的log,使用命令如下:

tail -f /opt/cm-5.8.2/log/cloudera-scm-server/cloudera-scm-server.log

tail -f /opt/cm-5.8.2/log/cloudera-scm-agent/cloudera-scm-agent.log

实际位置: /var/log/cloudera-scm-server/cloudera-scm-server.log 和 /var/log/cloudera-scm-agent/cloudera-scm-agent.log

遇到的一些问题

问题一:

[root@node1 ~]# spark-shell
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/fs/FSDataInputStream
        at org.apache.spark.deploy.SparkSubmitArguments$$anonfun$mergeDefaultSparkProperties$.apply(SparkSubmitArguments.scala:)
        at org.apache.spark.deploy.SparkSubmitArguments$$anonfun$mergeDefaultSparkProperties$.apply(SparkSubmitArguments.scala:)
        at scala.Option.getOrElse(Option.scala:)
        at org.apache.spark.deploy.SparkSubmitArguments.mergeDefaultSparkProperties(SparkSubmitArguments.scala:)
        at org.apache.spark.deploy.SparkSubmitArguments.<init>(SparkSubmitArguments.scala:)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.fs.FSDataInputStream
        at java.net.URLClassLoader.findClass(URLClassLoader.java:)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:)
        ...  more

查找spark-env.sh文件的位置:

[root@node1 /]# find / -name spark-env.sh
’: No such file or directory
/run/cloudera-scm-agent/process/-spark2_on_yarn-SPARK2_YARN_HISTORY_SERVER/aux/client/spark-env.sh
/run/cloudera-scm-agent/process/-spark2_on_yarn-SPARK2_YARN_HISTORY_SERVER/spark2-conf/spark-env.sh
……
/run/cloudera-scm-agent/process/-spark_on_yarn-SPARK_YARN_HISTORY_SERVER-SparkUploadJarCommand/aux/client/spark-env.sh
/run/cloudera-scm-agent/process/-spark_on_yarn-SPARK_YARN_HISTORY_SERVER-SparkUploadJarCommand/spark-conf/spark-env.sh
/gvfs’: Permission denied
/etc/spark/conf.cloudera.spark_on_yarn/spark-env.sh
/etc/spark2/conf.cloudera.spark2_on_yarn/spark-env.sh
/opt/cloudera/parcels/CDH--.cdh5./etc/spark/conf.dist/spark-env.sh

打开 /etc/spark2/conf.cloudera.spark2_on_yarn/spark-env.sh ,查看到一些内容:

export SPARK_HOME=/opt/cloudera/parcels/SPARK2-.cloudera4-.cdh5./lib/spark2

export HADOOP_HOME=/opt/cloudera/parcels/CDH--.cdh5./lib/hadoop

export SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:$(paste -sd: "$SELF/classpath.txt")"

并在文件的最后追加内容:

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

问题没有解决!

打开 /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/etc/spark/conf.dist/spark-env.sh ,查看到一些内容:

export STANDALONE_SPARK_MASTER_HOST=`hostname`
export SPARK_MASTER_IP=$STANDALONE_SPARK_MASTER_HOST
export SPARK_MASTER_PORT=
export SPARK_WORKER_PORT=
export SPARK_WORKER_DIR=/var/run/spark/work
export SPARK_LOG_DIR=/var/log/spark
export SPARK_PID_DIR='/var/run/spark/'
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:$SPARK_LIBRARY_PATH/spark-assembly.jar"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-hdfs/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-hdfs/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-mapreduce/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-mapreduce/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-yarn/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hadoop-yarn/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/hive/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/flume-ng/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/parquet/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/usr/lib/avro/*"
在 /etc/spark2/conf.cloudera.spark2_on_yarn/spark-env.sh 文件的末尾追加以下内容:
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/spark/lib/spark-assembly.jar"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-hdfs/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-hdfs/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-mapreduce/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-mapreduce/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-yarn/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-yarn/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hive/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/flume-ng/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/parquet/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/avro/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/jars/*"
export SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/jars/*"

问题依然没有解决!

在 /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/etc/spark/conf.dist/spark-env.sh 文件的末尾追加以下内容:

SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/spark/lib/spark-assembly.jar"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-hdfs/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-hdfs/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-mapreduce/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-mapreduce/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-yarn/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop-yarn/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hive/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/flume-ng/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/parquet/lib/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/avro/*"
SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/jars/*"
export SPARK_DIST_CLASSPATH="$SPARK_DIST_CLASSPATH:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/jars/*"
问题解决!执行命令 spark-shell ,返回信息如下:
[root@node1 ~]# spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding -.cdh5./jars/slf4j-log4j12-.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding -.cdh5./jars/avro-tools--cdh5.14.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding -.cdh5./jars/pig--cdh5.14.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding -.cdh5./jars/slf4j-simple-.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version
      /_/

Using Scala version  (Java HotSpot(TM) -Bit Server VM, Java 1.8.0_131)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc (master = local[*], app ).
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
SQL context available as sqlContext.

scala>
执行Spark自带的案例程序:
spark-submit --class org.apache.spark.examples.SparkPi --executor-memory 500m --total-executor-cores  /opt/cloudera/parcels/SPARK2-.cloudera4-.cdh5./lib/spark2/examples/jars/spark-examples_2.-.cloudera4.jar

返回信息如下:

[root@node1 ~]# spark-submit --class org.apache.spark.examples.SparkPi --executor-memory 500m --total-executor-cores  /opt/cloudera/parcels/SPARK2-.cloudera4-.cdh5./lib/spark2/examples/jars/spark-examples_2.-.cloudera4.jar
SLF4J: Class path contains multiple SLF4J bindings.
……
// :: INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@10.200.101.131:38370]
// :: INFO ui.SparkUI: Started SparkUI at http://10.200.101.131:4040
// :: INFO spark.SparkContext: Added JAR .cloudera4-.cdh5./lib/spark2/examples/jars/spark-examples_2.-.cloudera4.jar at spark://10.200.101.131:37025/jars/spark-examples_2.11-2.1.0.cloudera4.jar with timestamp 1556186427964
// :: INFO scheduler.DAGScheduler: Got job  (reduce at SparkPi.scala:) with  output partitions
// :: INFO scheduler.DAGScheduler: Final stage: ResultStage  (reduce at SparkPi.scala:)
// :: INFO executor.Executor: Fetching spark://10.200.101.131:37025/jars/spark-examples_2.11-2.1.0.cloudera4.jar with timestamp 1556186427964
// :: INFO util.Utils: Fetching spark://10.200.101.131:37025/jars/spark-examples_2.11-2.1.0.cloudera4.jar to /tmp/spark-c8bb0344-ce1a-4acc-98d8-dfdebd6b95d6/userFiles-c39c4a70-c9b0-40f7-b48f-cf0f4d46042e/fetchFileTemp8308576688554785370.tmp
// :: INFO executor.Executor: Adding -.cloudera4.jar to class loader
……
Pi is roughly 3.134555672778364
……
// :: INFO ui.SparkUI: Stopped Spark web UI at http://10.200.101.131:4040
// :: INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
// :: INFO storage.MemoryStore: MemoryStore cleared
// :: INFO storage.BlockManager: BlockManager stopped
// :: INFO storage.BlockManagerMaster: BlockManagerMaster stopped
// :: INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
// :: INFO spark.SparkContext: Successfully stopped SparkContext
// :: INFO util.ShutdownHookManager: Shutdown hook called
// :: INFO util.ShutdownHookManager: Deleting directory /tmp/spark-c8bb0344-ce1a-4acc-98d8-dfdebd6b95d6

从上面的信息可以看出,案例程序的运算结果为“Pi is roughly 3.134555672778364”

参考:

https://www.jianshu.com/p/1ed522c1ad1e

https://www.cnblogs.com/felixzh/p/9082344.html

Spark教程——(1)安装Spark的更多相关文章

  1. Ubuntu 14.04 LTS 安装 spark 1.6.0 (伪分布式)-26号开始

    需要下载的软件: 1.hadoop-2.6.4.tar.gz 下载网址:http://hadoop.apache.org/releases.html 2.scala-2.11.7.tgz 下载网址:h ...

  2. Spark学习笔记——安装和WordCount

    1.去清华的镜像站点下载文件spark-2.1.0-bin-without-hadoop.tgz,不要下spark-2.1.0-bin-hadoop2.7.tgz 2.把文件解压到/usr/local ...

  3. CentOS6.5 安装Spark集群

    一.安装依赖软件Scala(所有节点) 1.下载Scala:http://www.scala-lang.org/files/archive/scala-2.10.4.tgz 2.解压: [root@H ...

  4. RedHat6.5安装Spark单机

    版本号: RedHat6.5   RHEL 6.5系统安装配置图解教程(rhel-server-6.5) JDK1.8      http://blog.csdn.net/chongxin1/arti ...

  5. RedHat6.5安装Spark集群

    版本号: RedHat6.5   RHEL 6.5系统安装配置图解教程(rhel-server-6.5) JDK1.8      http://blog.csdn.net/chongxin1/arti ...

  6. [转] Spark快速入门指南 – Spark安装与基础使用

    [From] https://blog.csdn.net/w405722907/article/details/77943331 Spark快速入门指南 – Spark安装与基础使用 2017年09月 ...

  7. spark教程(九)-操作数据库

    数据库也是 spark 数据源创建 df 的一种方式,因为比较重要,所以单独算一节. 本文以 postgres 为例 安装 JDBC 首先需要 安装 postgres 的客户端驱动,即 JDBC 驱动 ...

  8. 学习记录(安装spark)

    根据林子雨老师提供的教程安装spark,用的是网盘里下载的课程软件 将文件通过ftp传到ubantu中 根据教程修改配置文件,并成功安装spark 在修改配置文件的时候出现了疏忽,导致找不到该文件,最 ...

  9. 2.安装Spark与Python练习

    一.安装Spark <Spark2.4.0入门:Spark的安装和使用> 博客地址:http://dblab.xmu.edu.cn/blog/1307-2/ 1.1 基础环境 1.1.1 ...

  10. 安装spark ha集群

    安装spark ha集群 1.默认安装好hadoop+zookeeper 2.安装scala 1.解压安装包 tar zxvf scala-2.11.7.tgz 2.配置环境变量 vim /etc/p ...

随机推荐

  1. stl_vector复习

    #include <iostream>#include <vector>#include <algorithm> //for_each#include <ct ...

  2. 常用的php函数

    最严格身份证号码验证,支持15位和19世纪出生的人的身份证号码 # 计算身份证校验码,根据国家标准GB 11643-1999 function idcard_verify_number($idcard ...

  3. spark实验(三)--Spark和Hadoop的安装(1)

    一.实验目的 (1)掌握在 Linux 虚拟机中安装 Hadoop 和 Spark 的方法: (2)熟悉 HDFS 的基本使用方法: (3)掌握使用 Spark 访问本地文件和 HDFS 文件的方法. ...

  4. ROS及Ubuntu学习记录

    1.ROS安装时出现 “无法获得锁的解决方法” 参考:https://www.jianshu.com/p/6868ed4b4aec 2.运行rviz时 要先在一个终端窗口运行roscore 3.虚拟机 ...

  5. BGR 与 HSV 模式的转换规则

    HSV模式中的H.S.V分别表示色调.饱和度.亮度 RGB转化到HSV的算法:max=max(R,G,B) min=min(R,G,B) if R = max, H = (G-B)/(max-min) ...

  6. 【NGINX】LINUX安装NGINX

    安装依赖() · yum install gcc · yum install pcre-devel · yum install zlib zlib-devel · yum install openss ...

  7. Tensorflow机器学习入门——AttributeError: module 'scipy.misc' has no attribute 'toimage'

    这个bug的解决办法: import cv2 # scipy.misc.toimage(image_array).save('cifar10_data/raw/%d.jpg' % i) cv2.imw ...

  8. SQL SERVER 2005还原差异备份、日志备份 2012-03-29 11:43

    其实要备份,还原最安全最有保障的是完全备份.但是完全备份肯定是需要更多的磁盘空间的开销.尤其是数据量比较大的.比如基数是500M,每天的增长量为10M,那么第一次完全备份是500M,第二次是510M, ...

  9. teraterm中log中加入时间戳

    步骤: 1.Setup->Additional settings->log->Timestamp(Local Time) 2.记录log.File->log(Teraterm. ...

  10. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 排版:引导主体副本

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...