Autograd:自动微分
Autograd
1、深度学习的算法本质上是通过反向传播求导数,Pytorch的Autograd模块实现了此功能;在Tensor上的所有操作,Autograd都能为他们自动提供微分,避免手动计算导数的复杂过程。
2、autograd.Variable是Autograd中的核心类,它简单的封装了Tensor,并支持几乎所有Tensor操作;Tensor被封装为Variable之后,可以调用它的.backward()实现反向传播,自动计算所有的梯度。
3、Variable主要包含三个属性:
data:保存Variable所包含的Tensor;
grad:保存data对应的梯度,grad也是个Variable,而不是Tensor,它和data的形状一样;
grad_fn:指向一个Function对象,这个Function用来反向传播计算输入的梯度。
具体代码解析
- #_Author_:Monkey
- #!/usr/bin/env python
- #-*- coding:utf-8 -*-
- import torch as t
- from torch.autograd import Variable
- x = Variable(t.ones(2,2),requires_grad = True)
- print(x)
- '''''tensor([[1., 1.],
- [1., 1.]], requires_grad=True)'''
- y = x.sum()
- print(y)
- '''''tensor(4., grad_fn=<SumBackward0>)'''
- print(y.grad_fn) #指向一个Function对象,这个Function用来反向传播计算输入的梯度
- '''''<SumBackward0 object at 0x000002D4240AB860>'''
- y.backward()
- print(x.grad)
- '''''tensor([[1., 1.],
- [1., 1.]])'''
- y.backward()
- print(x.grad)
- '''''tensor([[2., 2.],
- [2., 2.]])'''
- y.backward()
- print( x.grad )
- '''''tensor([[3., 3.],
- [3., 3.]])'''
- '''''grad在反向传播过程中时累加的(accumulated),这意味着运行
- 反向传播,梯度都会累加之前的梯度,所以反向传播之前需要梯度清零'''
- print( x.grad.data.zero_() )
- '''''tensor([[0., 0.],
- [0., 0.]])'''
- y.backward()
- print( x.grad )
- '''''tensor([[1., 1.],
- [1., 1.]])'''
- m = Variable(t.ones(4,5))
- n = t.cos(m)
- print(m)
- print(n)
- '''''tensor([[1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.]])
- tensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])'''
- m_tensor_cos = t.cos(m.data)
- print(m_tensor_cos)
- '''''ensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])'''
Autograd:自动微分的更多相关文章
- pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...
- 【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分
在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的 ...
- PyTorch自动微分基本原理
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...
- PyTorch 自动微分示例
PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...
- PyTorch 自动微分
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...
- LibTorch 自动微分
得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导. 进行自动微分运算需要调用函数 torch::autograd::grad( outputs, ...
- 附录D——自动微分(Autodiff)
本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\fr ...
- 自动微分(AD)学习笔记
1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...
- <转>如何用C++实现自动微分
作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...
- (转)自动微分(Automatic Differentiation)简介——tensorflow核心原理
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SG ...
随机推荐
- selenium中的下拉框处理模块Select
在UI自动化测试过程中,经常会遇到一些下拉框,如果我们基于Webdriver操作的话就需要click两次,而且很容易出现问题,实际上Selenium给我们提供了专门的Select(下拉框处理模块). ...
- String构造函数
只简单写了几个函数 class String { public: String(const char* pStr = NULL); String(const String& str); vir ...
- MySQL对以特定名字开头的数据库进行授权
对以"db_1"开头的数据库进行授权 grant all privileges on `db_1%`.* to dp_admin identified by 'password'; ...
- 在OS X 10.9配置WebDAV服务器联合NSURLSessionUploadTask实现文件上传
iOS7推出的NSURLSession简化了NSURLConnection的文件上传和下载的工作,本文记录如何配置WebDAV服务以支持PUT方式的文件上传. 一. 配置WebDAV服务器 1. 修改 ...
- ubuntu系统的teamviewer的安装及使用
参考链接: 安装: https://blog.csdn.net/weixin_34613450/article/details/80541799 使用: https://jingyan.baidu.c ...
- 从头开始学gradle【Gradle 构建基础】
构建基础 Project 和 task:projects 和 tasks是 Gradle 中最重要的两个概念. 任何一个 Gradle 构建都是由一个或多个 projects 组成.每个 projec ...
- 24 类:组合 继承 super关键字 面向对象的三大性
组合 组合:自定义类的对象作为另外一个类的属性 class Teacher: def __init__(self, name, age): self.name = name self.age = ag ...
- springboot idea 代码更改自己编译设置
第一步:在pom.xml文件中添加springboot 编译依赖 <dependency> <groupId>org.springframework.boot</grou ...
- SpringBoot 整合 Redis缓存
在我们的日常项目开发过程中缓存是无处不在的,因为它可以极大的提高系统的访问速度,关于缓存的框架也种类繁多,今天主要介绍的是使用现在非常流行的NoSQL数据库(Redis)来实现我们的缓存需求. Spr ...
- 使用 Appium 测试微信小程序 Webview
打开调试功能 通过微信打开debugx5.qq.com,或者直接扫下面二维码 勾选[打开TBS内核Inspector调试功能] Chrome查看页面元素 手机连接电脑,查看是否连接成功.如下展 ...