若$R=0$,那么显然答案为离原点最远的点到原点的距离。

否则若所有点都在原点,那么显然答案为$R$。

否则考虑二分答案$mid$,检查$mid$是否可行。

那么每个点根据对应圆交,可以覆盖圆上的一部分,每个可行方案都可以通过平移使得刚好卡住某个交点。

枚举每个交点,算出圆上$n$个位置的坐标,然后匈牙利算法判断是否存在完美匹配,时间复杂度$O(n^4\log w)$,不能承受。

注意到这个图是个稠密图,所以可以用bitset对匈牙利进行加速,做到$O(\frac{n^3}{32})$每次匹配。

另一方面,可以先枚举一个点$x$,然后再二分答案$mid$,判断是否有可行方案使得$x$刚好匹配$x$和圆的交点。

在这里,显然只需要在之前答案$ans$的基础之上往下二分,如果$ans-eps$不可行那么就没有继续二分的必要。

即:设$f[x]$表示$x$得到的最优解,若$f[x]$不是$f[1,x]$的最小值,那么就没有继续二分的必要。

考虑将读入的$n$个点随机打乱,那么$f[x]$是$f[1,x]$的最小值的概率为$\frac{1}{x}$,一共只有期望$O(\log n)$个$x$有二分的必要。

检查次数骤降为$O(n+\log n\log w)$,时间复杂度$O(\frac{(n+\log n\log w)n^3}{32})$。

注意要特判$mid$过小或者过大导致$x$与圆没有交点的情况。

#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef unsigned int U;
const int N=205,M=7;
const double eps=1e-9,pi=acos(-1.0);
int n,m,R,i,j;double lim,ans,rot[N][2],b[N][2];
int f[N];U v[M],g[N][M];
struct P{int x,y;}a[N];
inline int sgn(double x){
if(x>eps)return 1;
if(x<-eps)return -1;
return 0;
}
bool find(int x){
for(int i=0;i<=m;i++){
U t=v[i]&g[x][i];
while(t){
int j=i<<5|__builtin_ctz(t);
v[i]^=1U<<(j&31);
if(f[j]<0||find(f[j]))return f[j]=x,1;
t-=t&-t;
}
}
return 0;
}
inline bool check(int A,int B,double C){
double d=sqrt(a[A].x*a[A].x+a[A].y*a[A].y);
double l=(a[A].x*a[A].x+a[A].y*a[A].y+C*C-R*R)/(2*d);
double h=sqrt(max(C*C-l*l,0.0));
double bx=-a[A].x/d,by=-a[A].y/d;
double px=a[A].x+bx*l,py=a[A].y+by*l;
by=-by;
swap(bx,by);
bx*=h,by*=h;
if(B==0)px+=bx,py+=by;else px-=bx,py-=by;
int i,j;
b[0][0]=px,b[0][1]=py;
for(i=1;i<n;i++){
b[i][0]=px*rot[i][1]-py*rot[i][0];
b[i][1]=px*rot[i][0]+py*rot[i][1];
}
C*=C;
for(i=0;i<n;i++){
for(j=0;j<=m;j++)g[i][j]=0;
for(j=0;j<n;j++)if(sgn((a[i].x-b[j][0])*(a[i].x-b[j][0])+(a[i].y-b[j][1])*(a[i].y-b[j][1])-C)<=0)g[i][j>>5]|=1U<<(j&31);
}
for(i=0;i<n;i++)f[i]=-1;
for(i=0;i<n;i++){
for(j=0;j<=m;j++)v[j]=~0U;
if(!find(i))return 0;
}
return 1;
}
int main(){
scanf("%d%d",&n,&R);
m=(n-1)>>5;
for(i=0;i<n;i++)scanf("%d%d",&a[i].x,&a[i].y);
if(!R){
int ans=0;
for(i=0;i<n;i++)ans=max(ans,a[i].x*a[i].x+a[i].y*a[i].y);
double ret=sqrt(ans);
return printf("%.15f",ret),0;
}
random_shuffle(a,a+n);
for(i=1;i<n;i++){
double o=pi*2*i/n;
rot[i][0]=sin(o),rot[i][1]=cos(o);
}
for(i=0;i<n;i++){
int t=a[i].x*a[i].x+a[i].y*a[i].y;
double val;
if(t<=R)val=R-sqrt(t);else val=sqrt(t)-R;
lim=max(lim,val);
ans=max(ans,sqrt(t)+R);
}
for(i=0;i<n;i++)if(a[i].x||a[i].y)for(j=0;j<2;j++){
double l=lim,r=max(min(sqrt(a[i].x*a[i].x+a[i].y*a[i].y)+R,ans-eps),lim);
if(!check(i,j,r))continue;
while(l+eps<r){
double mid=(l+r)/2;
if(check(i,j,mid))r=ans=mid;else l=mid;
}
}
return printf("%.15f",ans),0;
}

  

BZOJ5316 : [Jsoi2018]绝地反击的更多相关文章

  1. 【BZOJ5316】[JSOI2018]绝地反击(网络流,计算几何,二分)

    [BZOJ5316][JSOI2018]绝地反击(网络流,计算几何,二分) 题面 BZOJ 洛谷 题解 很明显需要二分一个答案. 那么每个点可以确定的范围就是以当前点为圆心,二分出来的答案为半径画一个 ...

  2. LGP4518[JSOI2018]绝地反击

    题解: 只要确定了每艘飞船的就位位置,就可以用二分+网络流求得答案: 定义偏转角度$a$为离$x$正半轴逆时针最近的边的弧度,$a \in [0,\frac{2\pi}{n})$ 二分一个值,对于一个 ...

  3. 洛谷P4518 [JSOI2018]绝地反击(计算几何+二分图+退流)

    题面 传送门 题解 调了咱一个上午-- 首先考虑二分答案,那么每个点能够到达的范围是一个圆,这个圆与目标圆的交就是可行的区间,这个区间可以用极角来表示 首先,如果我们知道这个正\(n\)边形的转角,也 ...

  4. yyb省选前的一些计划

    突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...

  5. LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流

    题目:https://loj.ac/problem/2548 如果知道正多边形的顶点,就是二分答案.二分图匹配.于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( ...

  6. 【LOJ】#2548. 「JSOI2018」绝地反击

    题解 卡常卡不动,我自闭了,特判交上去过了 事实上90pts= = 我们考虑二分长度,每个点能覆盖圆的是一段圆弧 然后问能不能匹配出一个正多边形来 考虑抖动多边形,多边形的一个端点一定和圆弧重合 如果 ...

  7. 【JSOI2018】绝地反击

    题面 50pts 首先当然是二分答案\(mid\), 对于每一个点,以它为圆心的圆,交上攻击轨道: 那么这个点到攻击轨迹的可达范围就是一段圆弧. 怎么求这段圆弧呢? 我们知道圆弧可以用其两端点对于圆心 ...

  8. JSOI2018简要题解

    来自FallDream的博客,未经允许,请勿转载,谢谢. 有幸拜读到贵省的题目,题的质量还不错,而且相比zjoi可做多了,简单发一下题解吧. 还有就是,怎么markdown在博客园上的代码这么丑啊 「 ...

  9. JSOI2018 简要题解

    潜入行动 复杂度分析题. 定义状态fi,j,0/1,0/1f_{i,j,0/1,0/1}fi,j,0/1,0/1​表示以iii为根子树放jjj个机器iii这个放不放,iii这个是否已放来进行dpdpd ...

随机推荐

  1. Studio 5000编程:如何判断AB PLC系统中的硬件设备是否在正常工作

    前言:PLC控制系统,主要由CPU.本机架I/O模块,分布式I/O模块,通信模块,或其他设备(如:伺服驱动器.交换机.第三方设备)等组成,如何判断这些设备是否工作正常?或是一旦出现故障,能在第一时间判 ...

  2. JAVA的运算符和条件结构

    一.JAVA的运算符. 1.赋值运算符 赋值就是把一个变量的值赋给另一个变量. 语法: 变量名=表达式     例如  n = m + 5 2.算术运算符      算术运算符是数学中常用的加.减.乘 ...

  3. 2018-2019-2 20165337《网络对抗技术》Exp2 后门原理与实践

    基础问题回答 (1)例举你能想到的一个后门进入到你系统中的可能方式? 下载破解游戏,盗版电影或安装来历不明的软件,可能被留下后门. (2)例举你知道的后门如何启动起来(win及linux)的方式? w ...

  4. pythonのdjango 在控制台用log打印操作日志

    在Django项目的settings.py文件中,在最后复制粘贴如下代码: LOGGING = { 'version': 1, 'disable_existing_loggers': False, ' ...

  5. java hashmap的一些分析记录

    最近朋友去面试被问了些hashmap相关的问题,hashmap的初始容量啊,什么操作最耗时等,之前看过hashmap的源码,正好这里也在总结下. 主要围绕下面几个点: HashMap是由数组+链表(j ...

  6. # 20175333曹雅坤《Java程序设计》第七周学习总结

    教材学习内容总结 第八章-常用实用类String类 构造String对象 字符串的并置 String类的常用方法 字符串与基本数据的互相转化 对象的字符串表示 字符串与字符.字节数组 正则表达式及字符 ...

  7. JVM虚拟机和垃圾回收算法

    类加载机制 双亲委派模型 垃圾回收算法 CMS G1 类加载机制 双亲委派模型 双亲委派模型: 需要加载一个类,先委托父类加载,父类找父类,依次递归加载;加载不到再由自己加载 垃圾回收算法 JVM的内 ...

  8. lambda-基于谓词筛选值序列

    此方法通过使用延迟执行实现. 即时返回值为一个对象,该对象存储执行操作所需的所有信息. 只有通过直接调用对象的 GetEnumerator 方法或使用 Visual C# 中的 foreach(或 V ...

  9. Django ---- 框架简介

    MVC框架和MTV框架 mvc,全名是 Model View Controller, 是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model).视图(View)和控制器(Cont ...

  10. 四, 判断语句; 循环; 使用dict和set

    1)  练习 小明身高1.75,体重80.5kg.请根据BMI公式(体重除以身高的平方)帮小明计算他的BMI指数,并根据BMI指数: 低于18.5:过轻 18.5-25:正常 25-28:过重 28- ...