大意: 给定数组$a$, 每次操作使最大元素减小1最小元素增大1, 求k次操作后最大值与最小值的差.

二分出k次操作后最大值的最小值以及最小值的最大值, 若和能平分答案即为$max(0,R-L)$, 否则为$max(1,R-L)$

#include <iostream>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head #ifdef ONLINE_JUDGE
const int N = 1e6+10;
#else
const int N = 111;
#endif int n, k, a[N];
int main() {
scanf("%d%d", &n, &k);
REP(i,1,n) a[i]=rd();
int l=0,r=1e9,L,R;
while (l<=r) {
ll d = 0;
REP(i,1,n) if (a[i]<mid) d+=mid-a[i];
if (d<=k) L=mid,l=mid+1;
else r=mid-1;
}
l=0,r=1e9;
while (l<=r) {
ll d = 0;
REP(i,1,n) if (a[i]>mid) d+=a[i]-mid;
if (d<=k) R=mid,r=mid-1;
else l=mid+1;
}
int ans = max(0,R-L);
ll sum = 0;
REP(i,1,n) sum+=a[i];
if (sum%n) ans=max(ans,1);
printf("%d\n", ans);
}

Robin Hood CodeForces - 672D (二分)的更多相关文章

  1. Codeforces 672D Robin Hood(二分好题)

    D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  2. codeforces 672D D. Robin Hood(二分)

    题目链接: D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard ...

  3. Codeforces Round #352 (Div. 1) B. Robin Hood 二分

    B. Robin Hood 题目连接: http://www.codeforces.com/contest/671/problem/B Description We all know the impr ...

  4. Codeforces Round #352 (Div. 2) D. Robin Hood 二分

    D. Robin Hood   We all know the impressive story of Robin Hood. Robin Hood uses his archery skills a ...

  5. CF 672D Robin Hood(二分答案)

    D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  6. Codeforces 671B/Round #352(div.2) D.Robin Hood 二分

    D. Robin Hood We all know the impressive story of Robin Hood. Robin Hood uses his archery skills and ...

  7. Codeforces Round #352 (Div. 1) B. Robin Hood (二分)

    B. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  8. 【15.93%】【codeforces 672D】Robin Hood

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. 【CodeForces】671 B. Robin Hood

    [题目]B. Robin Hood [题意]给定n个数字的序列和k次操作,每次将序列中最大的数-1,然后将序列中最小的数+1,求最终序列极差.n<=5*10^5,0<=k<=10^9 ...

随机推荐

  1. HashMap 源码分析

    static final int DEFAULT_INITIAL_CAPACITY = 16;  默认容量 static final int MAXIMUM_CAPACITY = 1073741824 ...

  2. TCP连接状态管理

    tcp 连接过程 tcp 状态机

  3. 洛谷 K短路(魔法猪学院)

    A*+迪杰特斯拉... 第十一个点卡爆 不管了 #include<iostream> #include<algorithm> #include<cstring> # ...

  4. nmon安装与使用

    一.检查安装环境 1,# uname –a (查看操作系统信息,所检查服务器为64位操作系统) Linux jmeter 2.6.32-504.el6.x86_64 #1 SMP Wed Oct 15 ...

  5. [批处理]守护NodeJS进程

    背景: 日常进行CI过程中,使用NodeJs方式:GIT更新->检测是否需要编译->调用IncrediBuilder编译->读取编译日志判断是否通过->调用7z打包 问题: 持 ...

  6. WinForm窗体权限控制的简单实现

    一.建立两张表 //存放要控制的窗体控件 CREATE TABLE [dbo].[AuthControl] ( [Id] INT IDENTITY (1, 1) NOT NULL, [NiceName ...

  7. sai u 2016

    再过20分钟,我就要结束2016年的工作回家过春节了.真是难过的一天啊,从来没有今天那么感受深刻,那么嫌弃时间太慢,没有归家心似箭,没有近乡情怯,只是好想,呵呵,来个午睡,来场电影,来点小说,哈哈哈. ...

  8. windows杀进程

    netstat -aon|findstr 1099 tasklist|findstr 1008 taskkill /pid 10084 -f

  9. self sqflite sample =======================

    import 'package:path_provider/path_provider.dart'; import 'dart:async'; import 'package:flutter/mate ...

  10. 【题解】Luogu P2221 [HAOI2012]高速公路

    原题传送门 这道题还算简单 我们要求的期望值: \[\frac{\sum_{i=l}^r\sum_{j=l}^rdis[i][j]}{C_{r-l+1}^{2}}\] 当然是上下两部分分别求,下面肥肠 ...