浏览器与Node的事件循环(Event Loop)有何区别?
前言
本文我们将会介绍 JS 实现异步的原理,并且了解了在浏览器和 Node 中 Event Loop 其实是不相同的。
一、线程与进程
1. 概念
我们经常说 JS 是单线程执行的,指的是一个进程里只有一个主线程,那到底什么是线程?什么是进程?
官方的说法是:进程是 CPU 资源分配的最小单位;线程是 CPU 调度的最小单位。这两句话并不好理解,我们先来看张图:
- 进程好比图中的工厂,有单独的专属自己的工厂资源。
- 线程好比图中的工人,多个工人在一个工厂中协作工作,工厂与工人是 1:n 的关系。也就是说一个进程由一个或多个线程组成,线程是一个进程中代码的不同执行路线;
- 工厂的空间是工人们共享的,这象征一个进程的内存空间是共享的,每个线程都可用这些共享内存。
- 多个工厂之间独立存在。
2. 多进程与多线程
- 多进程:在同一个时间里,同一个计算机系统中如果允许两个或两个以上的进程处于运行状态。多进程带来的好处是明显的,比如你可以听歌的同时,打开编辑器敲代码,编辑器和听歌软件的进程之间丝毫不会相互干扰。
- 多线程:程序中包含多个执行流,即在一个程序中可以同时运行多个不同的线程来执行不同的任务,也就是说允许单个程序创建多个并行执行的线程来完成各自的任务。
以 Chrome 浏览器中为例,当你打开一个 Tab 页时,其实就是创建了一个进程,一个进程中可以有多个线程(下文会详细介绍),比如渲染线程、JS 引擎线程、HTTP 请求线程等等。当你发起一个请求时,其实就是创建了一个线程,当请求结束后,该线程可能就会被销毁。
二、浏览器内核
简单来说浏览器内核是通过取得页面内容、整理信息(应用 CSS)、计算和组合最终输出可视化的图像结果,通常也被称为渲染引擎。
浏览器内核是多线程,在内核控制下各线程相互配合以保持同步,一个浏览器通常由以下常驻线程组成:
- GUI 渲染线程
- JavaScript 引擎线程
- 定时触发器线程
- 事件触发线程
- 异步 http 请求线程
1. GUI 渲染线程
- 主要负责页面的渲染,解析 HTML、CSS,构建 DOM 树,布局和绘制等。
- 当界面需要重绘或者由于某种操作引发回流时,将执行该线程。
- 该线程与 JS 引擎线程互斥,当执行 JS 引擎线程时,GUI 渲染会被挂起,当任务队列空闲时,JS 引擎才会去执行 GUI 渲染。
2. JS 引擎线程
- 该线程当然是主要负责处理 JavaScript 脚本,执行代码。
- 也是主要负责执行准备好待执行的事件,即定时器计数结束,或者异步请求成功并正确返回时,将依次进入任务队列,等待 JS 引擎线程的执行。
- 当然,该线程与 GUI 渲染线程互斥,当 JS 引擎线程执行 JavaScript 脚本时间过长,将导致页面渲染的阻塞。
3. 定时器触发线程
- 负责执行异步定时器一类的函数的线程,如: setTimeout,setInterval。
- 主线程依次执行代码时,遇到定时器,会将定时器交给该线程处理,当计数完毕后,事件触发线程会将计数完毕后的事件加入到任务队列的尾部,等待 JS 引擎线程执行。
4. 事件触发线程
- 主要负责将准备好的事件交给 JS 引擎线程执行。
比如 setTimeout 定时器计数结束, ajax 等异步请求成功并触发回调函数,或者用户触发点击事件时,该线程会将整装待发的事件依次加入到任务队列的队尾,等待 JS 引擎线程的执行。
5. 异步 http 请求线程
- 负责执行异步请求一类的函数的线程,如: Promise,axios,ajax 等。
- 主线程依次执行代码时,遇到异步请求,会将函数交给该线程处理,当监听到状态码变更,如果有回调函数,事件触发线程会将回调函数加入到任务队列的尾部,等待 JS 引擎线程执行。
三、浏览器中的 Event Loop
1. Micro-Task 与 Macro-Task
事件循环中的异步队列有两种:macro(宏任务)队列和 micro(微任务)队列。宏任务队列可以有多个,微任务队列只有一个。
- 常见的 macro-task 比如:setTimeout、setInterval、 setImmediate、script(整体代码)、 I/O 操作、UI 渲染等。
- 常见的 micro-task 比如: process.nextTick、new Promise().then(回调)、MutationObserver(html5 新特性) 等。
2. Event Loop 过程解析
一个完整的 Event Loop 过程,可以概括为以下阶段:
一开始执行栈空,我们可以把执行栈认为是一个存储函数调用的栈结构,遵循先进后出的原则。micro 队列空,macro 队列里有且只有一个 script 脚本(整体代码)。
全局上下文(script 标签)被推入执行栈,同步代码执行。在执行的过程中,会判断是同步任务还是异步任务,通过对一些接口的调用,可以产生新的 macro-task 与 micro-task,它们会分别被推入各自的任务队列里。同步代码执行完了,script 脚本会被移出 macro 队列,这个过程本质上是队列的 macro-task 的执行和出队的过程。
上一步我们出队的是一个 macro-task,这一步我们处理的是 micro-task。但需要注意的是:当 macro-task 出队时,任务是一个一个执行的;而 micro-task 出队时,任务是一队一队执行的。因此,我们处理 micro 队列这一步,会逐个执行队列中的任务并把它出队,直到队列被清空。
执行渲染操作,更新界面
检查是否存在 Web worker 任务,如果有,则对其进行处理
上述过程循环往复,直到两个队列都清空
我们总结一下,每一次循环都是一个这样的过程:
当某个宏任务执行完后,会查看是否有微任务队列。如果有,先执行微任务队列中的所有任务,如果没有,会读取宏任务队列中排在最前的任务,执行宏任务的过程中,遇到微任务,依次加入微任务队列。栈空后,再次读取微任务队列里的任务,依次类推。
接下来我们看道例子来介绍上面流程:
Promise.resolve().then(()=>{
console.log('Promise1')
setTimeout(()=>{
console.log('setTimeout2')
},0)
})
setTimeout(()=>{
console.log('setTimeout1')
Promise.resolve().then(()=>{
console.log('Promise2')
})
},0)
最后输出结果是 Promise1,setTimeout1,Promise2,setTimeout2
- 一开始执行栈的同步任务(这属于宏任务)执行完毕,会去查看是否有微任务队列,上题中存在(有且只有一个),然后执行微任务队列中的所有任务输出 Promise1,同时会生成一个宏任务 setTimeout2
- 然后去查看宏任务队列,宏任务 setTimeout1 在 setTimeout2 之前,先执行宏任务 setTimeout1,输出 setTimeout1
- 在执行宏任务 setTimeout1 时会生成微任务 Promise2 ,放入微任务队列中,接着先去清空微任务队列中的所有任务,输出 Promise2
- 清空完微任务队列中的所有任务后,就又会去宏任务队列取一个,这回执行的是 setTimeout2
四、Node 中的 Event Loop
1. Node 简介
Node 中的 Event Loop 和浏览器中的是完全不相同的东西。Node.js 采用 V8 作为 js 的解析引擎,而 I/O 处理方面使用了自己设计的 libuv,libuv 是一个基于事件驱动的跨平台抽象层,封装了不同操作系统一些底层特性,对外提供统一的 API,事件循环机制也是它里面的实现(下文会详细介绍)。
Node.js 的运行机制如下:
- V8 引擎解析 JavaScript 脚本。
- 解析后的代码,调用 Node API。
- libuv 库负责 Node API 的执行。它将不同的任务分配给不同的线程,形成一个 Event Loop(事件循环),以异步的方式将任务的执行结果返回给 V8 引擎。
- V8 引擎再将结果返回给用户。
2. 六个阶段
其中 libuv 引擎中的事件循环分为 6 个阶段,它们会按照顺序反复运行。每当进入某一个阶段的时候,都会从对应的回调队列中取出函数去执行。当队列为空或者执行的回调函数数量到达系统设定的阈值,就会进入下一阶段。
从上图中,大致看出 node 中的事件循环的顺序:
外部输入数据-->轮询阶段(poll)-->检查阶段(check)-->关闭事件回调阶段(close callback)-->定时器检测阶段(timer)-->I/O 事件回调阶段(I/O callbacks)-->闲置阶段(idle, prepare)-->轮询阶段(按照该顺序反复运行)...
- timers 阶段:这个阶段执行 timer(setTimeout、setInterval)的回调
- I/O callbacks 阶段:处理一些上一轮循环中的少数未执行的 I/O 回调
- idle, prepare 阶段:仅 node 内部使用
- poll 阶段:获取新的 I/O 事件, 适当的条件下 node 将阻塞在这里
- check 阶段:执行 setImmediate() 的回调
- close callbacks 阶段:执行 socket 的 close 事件回调
注意:上面六个阶段都不包括 process.nextTick()(下文会介绍)
接下去我们详细介绍timers
、poll
、check
这 3 个阶段,因为日常开发中的绝大部分异步任务都是在这 3 个阶段处理的。
(1) timer
timers 阶段会执行 setTimeout 和 setInterval 回调,并且是由 poll 阶段控制的。
同样,在 Node 中定时器指定的时间也不是准确时间,只能是尽快执行。
(2) poll
poll 是一个至关重要的阶段,这一阶段中,系统会做两件事情
- 回到 timer 阶段执行回调
- 执行 I/O 回调
并且在进入该阶段时如果没有设定了 timer 的话,会发生以下两件事情
- 如果 poll 队列不为空,会遍历回调队列并同步执行,直到队列为空或者达到系统限制
- 如果 poll 队列为空时,会有两件事发生
- 如果有 setImmediate 回调需要执行,poll 阶段会停止并且进入到 check 阶段执行回调
- 如果没有 setImmediate 回调需要执行,会等待回调被加入到队列中并立即执行回调,这里同样会有个超时时间设置防止一直等待下去
当然设定了 timer 的话且 poll 队列为空,则会判断是否有 timer 超时,如果有的话会回到 timer 阶段执行回调。
(3) check 阶段
setImmediate()的回调会被加入 check 队列中,从 event loop 的阶段图可以知道,check 阶段的执行顺序在 poll 阶段之后。
我们先来看个例子:
console.log('start')
setTimeout(() => {
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
setTimeout(() => {
console.log('timer2')
Promise.resolve().then(function() {
console.log('promise2')
})
}, 0)
Promise.resolve().then(function() {
console.log('promise3')
})
console.log('end')
//start=>end=>promise3=>timer1=>timer2=>promise1=>promise2
- 一开始执行栈的同步任务(这属于宏任务)执行完毕后(依次打印出 start end,并将 2 个 timer 依次放入 timer 队列),会先去执行微任务(这点跟浏览器端的一样),所以打印出 promise3
- 然后进入 timers 阶段,执行 timer1 的回调函数,打印 timer1,并将 promise.then 回调放入 microtask 队列,同样的步骤执行 timer2,打印 timer2;这点跟浏览器端相差比较大,timers 阶段有几个 setTimeout/setInterval 都会依次执行,并不像浏览器端,每执行一个宏任务后就去执行一个微任务(关于 Node 与浏览器的 Event Loop 差异,下文还会详细介绍)。
3. 注意点
(1) setTimeout 和 setImmediate
二者非常相似,区别主要在于调用时机不同。
- setImmediate 设计在 poll 阶段完成时执行,即 check 阶段;
- setTimeout 设计在 poll 阶段为空闲时,且设定时间到达后执行,但它在 timer 阶段执行
setTimeout(function timeout () {
console.log('timeout');
},0);
setImmediate(function immediate () {
console.log('immediate');
});
- 对于以上代码来说,setTimeout 可能执行在前,也可能执行在后。
- 首先 setTimeout(fn, 0) === setTimeout(fn, 1),这是由源码决定的
进入事件循环也是需要成本的,如果在准备时候花费了大于 1ms 的时间,那么在 timer 阶段就会直接执行 setTimeout 回调 - 如果准备时间花费小于 1ms,那么就是 setImmediate 回调先执行了
但当二者在异步 i/o callback 内部调用时,总是先执行 setImmediate,再执行 setTimeout
const fs = require('fs')
fs.readFile(__filename, () => {
setTimeout(() => {
console.log('timeout');
}, 0)
setImmediate(() => {
console.log('immediate')
})
})
// immediate
// timeout
在上述代码中,setImmediate 永远先执行。因为两个代码写在 IO 回调中,IO 回调是在 poll 阶段执行,当回调执行完毕后队列为空,发现存在 setImmediate 回调,所以就直接跳转到 check 阶段去执行回调了。
(2) process.nextTick
这个函数其实是独立于 Event Loop 之外的,它有一个自己的队列,当每个阶段完成后,如果存在 nextTick 队列,就会清空队列中的所有回调函数,并且优先于其他 microtask 执行。
setTimeout(() => {
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
})
})
})
})
// nextTick=>nextTick=>nextTick=>nextTick=>timer1=>promise1
五、Node 与浏览器的 Event Loop 差异
浏览器环境下,microtask 的任务队列是每个 macrotask 执行完之后执行。而在 Node.js 中,microtask 会在事件循环的各个阶段之间执行,也就是一个阶段执行完毕,就会去执行 microtask 队列的任务。
接下我们通过一个例子来说明两者区别:
setTimeout(()=>{
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
setTimeout(()=>{
console.log('timer2')
Promise.resolve().then(function() {
console.log('promise2')
})
}, 0)
浏览器端运行结果:timer1=>promise1=>timer2=>promise2
浏览器端的处理过程如下:
Node 端运行结果:timer1=>timer2=>promise1=>promise2
- 全局脚本(main())执行,将 2 个 timer 依次放入 timer 队列,main()执行完毕,调用栈空闲,任务队列开始执行;
- 首先进入 timers 阶段,执行 timer1 的回调函数,打印 timer1,并将 promise1.then 回调放入 microtask 队列,同样的步骤执行 timer2,打印 timer2;
- 至此,timer 阶段执行结束,event loop 进入下一个阶段之前,执行 microtask 队列的所有任务,依次打印 promise1、promise2
Node 端的处理过程如下:
六、总结
浏览器和 Node 环境下,microtask 任务队列的执行时机不同
- Node 端,microtask 在事件循环的各个阶段之间执行
- 浏览器端,microtask 在事件循环的 macrotask 执行完之后执行
参考文章
- 浏览器进程?线程?傻傻分不清楚!
- 事件循环机制的那些事
- 前端性能优化原理与实践
- 前端面试之道
- 深入理解 js 事件循环机制(Node.js 篇)
- 详解 JavaScript 中的 Event Loop(事件循环)机制
- event-loop-timers-and-nexttick
关于Fundebug
Fundebug专注于JavaScript、微信小程序、微信小游戏、支付宝小程序、React Native、Node.js和Java线上应用实时BUG监控。 自从2016年双十一正式上线,Fundebug累计处理了9亿+错误事件,付费客户有Google、360、金山软件、百姓网等众多品牌企业。欢迎大家免费试用!
版权声明
转载时请注明作者Fundebug以及本文地址:
https://blog.fundebug.com/2019/01/15/diffrences-of-browser-and-node-in-event-loop/
浏览器与Node的事件循环(Event Loop)有何区别?的更多相关文章
- JS事件循环(Event Loop)机制
前言 众所周知,为了与浏览器进行交互,Javascript是一门非阻塞单线程脚本语言. 为何单线程? 因为如果在DOM操作中,有两个线程一个添加节点,一个删除节点,浏览器并不知道以哪个为准,所以只能选 ...
- 事件循环 event loop 究竟是什么
事件循环 event loop 究竟是什么 一些概念 浏览器运行时是多进程,从任务管理器或者活动监视器上可以验证. 打开新标签页和增加一个插件都会增加一个进程,如下图:  浏览器渲染进程是多线程,包 ...
- 事件循环Event loop到底是什么
摘要:本文通过结合官方文档MDN和其他博客深入解析浏览器的事件循环机制,而NodeJS有另一套事件循环机制,不在本文讨论范围中.process.nextTick和setImmediate是NodeJS ...
- 简单了解一下事件循环(Event Loop)
关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...
- JavaScript事件循环(Event Loop)机制
JavaScript 是单线程单并发语言 什么是单线程 主程序只有一个线程,即同一时间片断内其只能执行单个任务. 为什么选择单线程? JavaScript的主要用途是与用户互动,以及操作DOM.这决定 ...
- 事件循环Event Loop
在 事件循环 期间的某个时刻,运行时会从最先进入队列的消息开始处理队列中的消息.被处理的消息会被移出队列,并作为输入参数来调用与之关联的函数.正如前面所提到的,调用一个函数总是会为其创造一个新的栈帧. ...
- JavaScipt 中的事件循环(event loop),以及微任务 和宏任务的概念
说事件循环(event loop)之前先要搞清楚几个问题. 1. js为什么是单线程的? 试想一下,如果js不是单线程的,同时有两个方法作用dom,一个删除,一个修改,那么这时候浏览器该听谁的? ...
- JavaScript 事件循环 — event loop
引言 相信所有学过 JavaScript 都知道它是一门单线程的语言,这也就意味着 JS 无法进行多线程编程,但是 JS 当中却有着无处不在的异步概念 .在初期许多人会把异步理解成类似多线程的编程模式 ...
- 一文梳理JavaScript 事件循环(Event Loop)
事件循环(Event Loop),是每个JS开发者都会接触到的概念,但是刚接触时可能会存在各种疑惑. 众所周知,JS是单线程的,即同一时间只能运行一个任务.一般情况下这不会引发问题,但是如果我们有一个 ...
随机推荐
- JDK 1.8判断集合种的元素是否存在相同
List<String> str=new ArrayList<>(); str.add("a"); str.add("a"); str. ...
- unity网络----简单基础
网络 TCP:与打电话类似,通知服务到位 UDP:与发短信类似,消息发出即可 IP和端口号是网络两大重要成员 端口号(Port)分为知名端口号[0-1024,不开放)和动态端口号[1024,10000 ...
- 一文读懂四种常见的XML解析技术
之前的文章我们讲解了<XML系列教程之Schema技术_上海尚学堂java培训技术干货><XML的概念.特点与作用.XML申明_上海Java培训技术干货>,大家可以点击回顾一下 ...
- 本地安装MySQL详细教程
第1章 MySQL的安装与使用 1.1 MySQL安装与配置 1.1.1 MYSQL的安装 1.打开下载的mysql安装文件mysql-5.5.27-win32.zip,双击解压缩,运行“set ...
- python-类的定制
1.看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的.__slots__我们已经知道怎么用了,__len__()方法我们也知道是为了能让cl ...
- iOS——调试工具LLDB学习
一.前言 LLDB是个开源的内置于XCode的具有REPL(read-eval-print-loop)特征的Debugger,其可以安装C++或者Python插件.在日常的开发和调试过程中给开发人员带 ...
- 基于IPV6的数据包分析(更新拓扑加入了linux主机和抓取133icmp包)(第十三组)
1.拓扑图 2.配置ipv6地址,在拓扑图上对应位置标有对应网段,所在网段的端口按照网段配置,下图以r4为例 3.配置路由表,由于静态路由还要敲ip很麻烦所以使用ospf协议,下图为ospf配置以r5 ...
- 一个std::sort 自定义比较排序函数 crash的分析过程
两年未写总结博客,今天先来练练手,总结最近遇到的一个crash case. 注意:以下的分析都基于GCC4.4.6 一.解决crash 我们有一个复杂的排序,涉及到很多个因子,使用自定义排序函数的st ...
- 第五周 IP通信基础回顾
广播请求,单播响应,ARP IPV4,IP地址32位二进制代码分为8个位一组 路由器每一个接口都是一个网段 ,网段与网段区分看网络地址 同一段链路是同网段 直接广播:主机号全为1 受限广播:全为1 特 ...
- Oracle绝对秒数转换为时间戳
一般Oracle得到的时间格式为: 1970-01-05 01:23:56.297 为了计算两个时间的差值: 1970-01-05 01:23:56.297 与 1970-01-05 01:24:57 ...