[再寄小读者之数学篇](2014-04-01 from 2103471050@qq.com 曲线积分)
求 $\int_\vGa y^2\rd s$, 其中 $\vGa$ 由 $\dps{\sedd{\ba{rl} x^2+y^2+z^2&=a^2\\ x+z&=a \ea}}$ 决定.
解答: $\vGa$: $$\bex \sedd{\ba{rl} \sex{x-\cfrac{a}{2}}^2+y^2+\sex{z-\cfrac{a}{2}}^2&=\cfrac{a^2}{2}\\ \sex{x-\cfrac{a}{2}}+\sex{y-\cfrac{a}{2}}&=0 \ea}. \eex$$ 作变换 $$\bex u=x-\cfrac{a}{2},\quad v=y,\quad w=z-\cfrac{a}{2}, \eex$$ 则 $$\beex \bea \int_\vGa y^2\rd s &=\int_l v^2\rd s\quad\sex{l:\ \sedd{\ba{rl} u^2+v^2+w^2&=\cfrac{a^2}{2}\\ u+w=0 \ea}}\\ &=\int_0^{2\pi} \cfrac{a^2}{2}\sin^2\tt \sqrt{\sex{\cfrac{\rd u}{\rd \tt}}^2 +\sex{\cfrac{\rd v}{\rd t}}^2 +\sex{\cfrac{\rd w}{\rd t}}^2}\rd \tt\\ &\quad\sex{l:\ \sedd{\ba{rl} u=\cfrac{a}{2}\cos\tt\\ v=\cfrac{a}{\sqrt{2}}\sin\tt\\ w=-\cfrac{a}{2}\cos\tt \ea}, 0\leq \tt\leq 2\pi}\\ &=\int_0^{2\pi} \cfrac{a^2}{2}\sin^2\tt \cdot \cfrac{a}{\sqrt{2}}\rd \tt\\ &=\cfrac{a^3\pi}{2\sqrt{2}}. \eea \eeex$$
[再寄小读者之数学篇](2014-04-01 from 2103471050@qq.com 曲线积分)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- Linux Collection:源和更新
PAS 配置sources.list软件源 参考例子(Debian 9,文件/etc/apt/sources.list): deb https://mirrors.ustc.edu.cn/debian ...
- 基于element ui的级联选择器组件实现的分类后台接口
今天在做资产管理系统的时候遇到一个分类的级联选择器,前端是用的element的组件,需要后台提供接口支持. 这个组件需要传入的数据结构大概是这样的,详细的可参考官方案例: [{ value: ...
- 学习笔记《Mustache》模板
Mustache 是一款经典的前端模板引擎,在前后端分离的技术架构下面,前端模板引擎是一种可以被考虑的技术选型,随着重型框架(AngularJS.ReactJS.Vue)的流行,前端的模板技术已经成为 ...
- Luogu4755 Beautiful Pair 最值分治、主席树
传送门 整天做一些模板题感觉药丸 设\(val_i\)表示第\(i\)个位置的值 看到区间最大值考虑最值分治.对于当前的区间\([l,r]\),找到区间最大值\(mid\),递归\([l,mid-1] ...
- Codeforces Global Round 2 Solution
这场题目设置有点问题啊,难度:Div.2 A->Div.2 B->Div.2 D->Div.2 C->Div.2 D->Div.1 D-> Div.1 E-> ...
- Golang 入门系列(六)理解Go中的协程(Goroutine)
前面讲的都是一些Go 语言的基础知识,感兴趣的朋友可以先看看之前的文章.https://www.cnblogs.com/zhangweizhong/category/1275863.html. 今天就 ...
- spring Jackson 配置笔记
配置代码 // 设置输出时包含属性的风格 this.findAndRegisterModules(); this.setSerializationInclusion(JsonInclude.Inclu ...
- Git命令集
安装 Window https://gitforwindows.org/ MAC http://sourceforge.net/projects/git-osx-installer/ git conf ...
- easyui-tab标签
一. 加载方式 //class 加载方式<div id="box" class="easyui-tabs" style="width:500px ...
- 通过secureCRT连接虚拟机VMware workstation问题记录
很急没有使用虚拟机了,今天再登录的时候,发现用secureCRT连接不上VMware workstation 1.连接步骤: 1)打开secureCRT,点击+ 新建一个连接 2)按照流程一步一步配置 ...