本章概要

  数据加载、存储与文件格式

数据加载、存储与文件格式

读取文本格式数据

read_csv 默认是按照逗号分割,也可设定其他分割符

df = pd.read_csv('file', sep='|')

也可以使用read_table,但是必须要指定分隔符

df = pd.read_table('examples/ex1.csv', sep=',')

一些参数设置

pd.read_csv('examples/ex2.csv', header=None)
# 一些文件没有列标题,可以设置文件头为空 pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
# 也可以为没有列标题的文件自定义列标题 pd.read_csv('examples/ex2.csv', names=names, index_col='message')
# 自定义的列标题中的message列放到索引位置 parsed = pd.read_csv('examples/csv_mindex.csv', index_col=['key1', 'key2'])
# 使用文件内多个列做成层次化索引 result = pd.read_table('examples/ex3.txt', sep='\s+')
# 有些时候表格不是按照固定的分割符去分割字段的,可以在分隔符参数传入正则表达式 这里的\s+表示的是匹配空格符,空格,制表符,换页符 pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
# 有些文件可能会有一些注释,描述性文字在文件头,可以通过skiprows参数跳过指定行 result = pd.read_csv('examples/ex5.csv')
pd.isnull(result)
# 判断dataframe里面的每个值是否为空,在值的位置返回布尔值 result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])
# 可以接受列表来表示缺失值的字符串 sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
pd.read_csv('examples/ex5.csv', na_values=sentinels)
# 可以用字典为指定列定制不同的NA标记值

逐块读取文本文件

在处理大文件时,可能只是想读取文件的一小部分或逐块对文件进行迭代。

pd.options.display.max_rows = 10

设置大文件的dataframe显示10行,前5后5

pd.read_csv('examples/ex6.csv', nrows=5)
# 只读取5行 chunker = pd.read_csv('ch06/ex6.csv', chunksize=1000)
chunker
<pandas.io.parsers.TextParser at 0x8368250>
# read_csv所返回的这个TextParser对象使你可以根据chunksize对文件进行逐块迭代。 chunker = pd.read_csv('examples/ex6.csv', chunksize=1000) tot = Series([])
for piece in chunker:
tot = tot.add(piece['key'].value_counts(), fill_value=0) tot = tot.sort_values(ascending=False)
# 我们可以迭代处理ex6.csv,将值计数聚合到"key"列中

数据写出到文本格式

data = pd.read_csv('test/ex5.csv')
# 读取文件到dataframe data.to_csv('test/out.csv')
# 将数据写入文件,默认逗号分割 data.to_csv(sys.stdout, sep='|')
# 也可以设定分隔符 data.to_csv(sys.stdout, na_rep='NULL')
# 缺失值在输出结果中会被表示为空字符串 data.to_csv(sys.stdout, index=False, header=False)
#可以禁用行列索引 data.to_csv(sys.stdout, index=False, columns=['a', 'b', 'c'])
# 还可以指定写入你需要的列,并按顺序排列 series.to_csv('examples/tseries.csv')
# series也有写如的to_csv方法

处理分隔符格式

大部分存储在磁盘上的表格型数据都能用pandas.read_table进行加载。然而,有时还是需要做一些手工处理。由于接收到含有畸形行的文件而使read_table出毛病的情况并不少见。为了说明这些基本工具,看看下面这个简单的CSV文件:

In [1]: !cat examples/ex7.csv
"a","b","c"
"","",""
"","",""

对于任意单字符分隔符文件,可以直接使用内置的csv模块,将任意已打开的文件或文件型的对象传给csv.reader

import csv
f = open('examples/ex7.csv')
reader = csv.reader(f)
In [2]: for line in reader:
....: print(line)
['a', 'b', 'c']
['', '', '']
['', '', '']

现在,为了使数据格式合乎要求,你需要对其做一些整理工作。我们一步一步来做。首先,读取文件到一个多行的列表中:

In [3]: with open('examples/ex7.csv') as f:
....: lines = list(csv.reader(f))

然后,我们将这些行分为标题行和数据行:

In [4]: header, values = lines[0], lines[1:]

然后,我们可以用字典构造式和zip(*values),后者将行转置为列,创建数据列的字典:

In [5]: data_dict = {h: v for h, v in zip(header, zip(*values))}
In [6]: data_dict
Out[7]: {'a': ('', ''), 'b': ('', ''), 'c': ('', '')}

CSV文件的形式有很多。只需定义csv.Dialect的一个子类即可定义出新格式(如专门的分隔符、字符串引用约定、行结束符等):

class my_dialect(csv.Dialect):
lineterminator = '\n'
delimiter = ';'
quotechar = '"'
quoting = csv.QUOTE_MINIMAL
reader = csv.reader(f, dialect=my_dialect)

各个CSV语支的参数也可以用关键字的形式提供给csv.reader,而无需定义子类:

reader = csv.reader(f, delimiter='|')

要手工输出分隔符文件,你可以使用csv.writer。它接受一个已打开且可写的文件对象以及跟csv.reader相同的那些语支和格式化选项:

with open('mydata.csv', 'w') as f:
writer = csv.writer(f, dialect=my_dialect)
writer.writerow(('one', 'two', 'three'))
writer.writerow(('', '', ''))
writer.writerow(('', '', ''))
writer.writerow(('', '', ''))

其他格式的数据读取

https://www.jianshu.com/p/047d8c1c7e14,有需求的时候看一下就好了,没必要太关注

Python 数据分析4的更多相关文章

  1. [Python数据分析]新股破板买入,赚钱几率如何?

    这是本人一直比较好奇的问题,网上没搜到,最近在看python数据分析,正好自己动手做一下试试.作者对于python是零基础,需要从头学起. 在写本文时,作者也没有完成这个小分析目标,边学边做吧. == ...

  2. 【Python数据分析】Python3多线程并发网络爬虫-以豆瓣图书Top250为例

    基于上两篇文章的工作 [Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 [Python数据分析]Python3操作Excel(二) 一些问题的解决与优化 已经正确地实现 ...

  3. 【Python数据分析】Python3操作Excel(二) 一些问题的解决与优化

    继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛 ...

  4. 【搬砖】【Python数据分析】Pycharm中plot绘图不能显示出来

    最近在看<Python数据分析>这本书,而自己写代码一直用的是Pycharm,在练习的时候就碰到了plot()绘图不能显示出来的问题.网上翻了一下找到知乎上一篇回答,试了一下好像不行,而且 ...

  5. Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识

    Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...

  6. Python数据分析(二): Numpy技巧 (1/4)

    In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  

  7. Python数据分析(二): Numpy技巧 (2/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

  8. Python数据分析(二): Numpy技巧 (3/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

  9. Python数据分析(二): Numpy技巧 (4/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   第一部分: ht ...

  10. 【读书笔记与思考】《python数据分析与挖掘实战》-张良均

    [读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...

随机推荐

  1. vue使用npm run build命令打包

    vue使用npm run build命令打包项目   当我们使用vue-cli脚手架完成一个项目的时候,下一步肯定会想要怎么把这个项目放到互联网上或者本地直接打开呢,我们在本地调试的时候只要命令行执行 ...

  2. WPF 控件之 Popup

    1.经常使用属性说明 IsOpen: 布尔值,指示 Popup 控件是否显示 StaysOpen: 布尔值,指示在 Popup 控件失去焦点的时候,是否关闭 Popup 控件的显示 PopupAnim ...

  3. 四。Hibernate 使用MAVEN工具

    maven工具的使用1.作用:打包项目以及jar包的版本管理2.使用步骤: a.下载maven工具,修改conf目录下的setting.xml文件 <mirror> <id>a ...

  4. ASP.NET Core RSA加密或解密

    前言 这两天主要是公司同事用到了RSA加密,事后也看了下,以为很简单,最终利用RSACryptoServiceProvider来实现RSA加密,然后大致了解到RSACryptoServiceProvi ...

  5. 开源 , KoobooJson一款高性能且轻量的JSON框架

    KoobooJson - 更小更快的C# JSON序列化工具(基于表达式树构建) 在C#领域,有很多成熟的开源JSON框架,其中最著名且使用最多的是 Newtonsoft.Json ,然而因为版本迭代 ...

  6. 什么是Vagrant

    相信大家对VMware和VirsualBox不会太陌生,虚拟化的好处在这里我就不多说了.那么我们就一起来学习用Vagrant 为自己来打造一个神奇的跨平台开发环境吧!! 开发过程中,我们经常碰到一个问 ...

  7. 微信支付之01------获取订单微信支付二维码的接口------Java实现

    [ 前言:以前写过一个获取微信二维码支付的接口,发现最近公司新开的项目会经常用到,现在我又翻出代码看了一遍,觉得还是把整个代码流程记下来的好 ] 借鉴博客: 他这篇博客写得不错,挺全的:https:/ ...

  8. plus.webview更新上一个页面的信息

    let currentWebview = plus.webview.currentWebview();       let backWebview = currentWebview.opener(); ...

  9. LODOP中tfoot和tbody中间线连不起来

    这种情况发生在使用ADD_PRINT_TABLE时,ADD_PRINT_TABLE是Lodop中专门用来输出table表格的语句,它有很多特点,比如该语句不切行(详细可参考查看本博客相关博文:LODO ...

  10. mac 开发环境安装

    0: 安装brew : mac终端输入: /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/ ...